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IHPT and athletic performances

INTRODUCTION
Given the importance of force production in athletic activities, sport 
scientists and applied practitioners routinely assess force capabilities 
using a variety of physical tests [1, 2]. In particular, tests involving 
maximal voluntary isometric contractions [1, 3–5] are commonly 
implemented due to their high reliability [4, 6–9], ease to be admin-
istered [1, 4, 10], time efficiency [4] and minimal skill require-
ment [1, 4]. Two isometric tests frequently used in exercise and sport 
science settings are the isometric mid-thigh pull (IMTP) and the 
isometric squat (ISQT) tests [4–6, 9]. Both are reliable [4, 6–9, 11], 
are correlated with athletic performance indices, such as jump height 
(e.g., absolute and body mass relative gross peak force outputs across 
time intervals ranging from 50 ms to 300 ms) [11–14], sprint times 
over distances from 5 m to 20 m (e.g., absolute net peak force and 
peak rate of force development outputs as well as rate of force de-
velopment variables expressed both as peak values and across time 
intervals ranging from 30 ms to 100 ms) [11–13, 15] and change 
of direction times (peak gross force and peak rate of force 
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development outputs) [14, 15], and are able to distinguish between 
athletes of different competitive levels [11, 16–18].

Although the IMTP and ISQT tests are extensively studied and 
broadly implemented, both present two main limitations. First, both 
tests require subjects to assume an upright position, which closely 
resemble the body configurations of vertically-oriented tasks like 
jumping or weightlifting exercises, but of less relevance to tasks re-
quiring forward orientation such as accelerations  [18–22], 
sprints [20, 23] and horizontal jumps [20, 22]. Accordingly, when 
interpreting the relationships between force variables collected dur-
ing IMPT and ISQT and athletic tasks performances, the specific 
body position and the reduced dynamic correspondence with hori-
zontally-oriented tasks should be considered [24]. Indeed, numerous 
studies reported a large number of IMTP and ISQT outputs such as 
absolute, body mass relative or allometrically scaled gross peak 
forces, peak rate of force development and allometrically scaled rate 
of force development across time intervals ranging from 50 ms to 
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the body orientation in the IHPT is partly similar to that an athlete 
assumes prior to performing horizontal jumps and short-sprint tasks, 
which presumes kinetic responses similar to these athletic 
tasks [18, 19, 31]. However, additional steps are currently required 
to establish the utility of the IHPT.

The primary aim of this study was to expand upon the work of 
Dello Iacono et al. [30] and examine the relationships between 
maximal isometric force outputs measured during the IHPT and ver-
tically- and horizontally-oriented athletic tasks. A secondary aim was 
to determine whether differences in IHPT outputs exist between pro-
fessional youth football players and recreationally active university 
students. We hypothesised that the IHPT outputs would strongly 
correlate with performances in athletic tasks as well as able to dis-
criminate between athletes and non-athletic controls.

MATERIALS AND METHODS 
Study design
A correlation study design was used to investigate the relationships 
between the IHPT outputs and athletic performances. One week before 
the experimental trials, subjects completed two familiarization sessions 
to become acquainted with the testing procedures. In particular, they 
were provided with instructions for the correct execution of all testing 
procedures, and completed two trials for each test following the same 
standardized warm-up implemented during the experimental sessions. 
Then, 48–72 hours after the familiarization sessions, subjects per-
formed two testing sessions separated by a further 48 hours of recov-
ery. On both occasions, subjects first completed a standardized warm-
up followed by IHPT, countermovement jump (CMJ), standing long 
jump (SLJ) and 20 m linear sprint assessments, whose allocation 
across the two testing sessions (two tests per session) and order of 
execution within each session were randomly determined (www.ran-
dom.org). Subjects were asked to refrain from completing strenuous 
physical activities and from consuming caffeine, alcohol, or any ergo-
genic substance two days prior and on the day of experimental sessions, 
respectively. Sessions were administered in the same facilities, at the 
same time of the day (3:00–6:00 PM), ambient temperature 
(22.1 ± 0.3°C) and relative humidity (61 ± 2%).

Subjects
Sample size was calculated using a priori power analysis in the 
G*Power software (Heinrich-Heine-Universitat Dusseldorf, Germany). 
To this end, the summary results of a recent review article by Lum 
et al. [3] were used to compute the sample size calculation. Spe-
cifically, large correlations were reported between isometric force 
outputs expressed either as absolute values or relative to body mass 
and dynamic performances such as jump height, horizontal jump 
distance and sprint times. Accordingly, we used a correlation design 
with an α = 0.05, β = 0.2 and adequately powered (1 – β = 0.8), 
to detect strong linear relationships (r > 0.6) between the explana-
tory variable – IHPT output – and the outcome variables – athletic 
performances. This gave an estimated sample size of thirty subjects. 

250 ms as strongly correlated with vertical jump height [25–27]. 
Likewise, strong correlations have been found between absolute gross 
and body mass relative gross peak force outputs in IMTP and ISQT 
tests and the one-repetition maximum loads in the squat [25, 28], 
power clean [25, 28], and deadlift exercises [29]. Conversely, ab-
solute, body mass relative or allometrically scaled gross peak force 
outputs as well as rate of force development at 100 ms were only 
moderately correlated with short- and long-distance sprint 
times [11, 12, 15]. Second, the unique set up necessary to conduct 
these tests, requires a robust weightlifting cage securing the barbell 
as immobile as possible during their execution and a costly force 
plate, which are not accessible and affordable to many.

In view of the limitations of the IMTP and ISQT, Dello Iacono 
et al. [30] have recently developed a new isometric test – the Iso-
metric Horizontal Push Test (IHPT) – that quantifies the horizontal 
component of the GRF produced during a maximal isometric effort 
in a crouched position such as that of a sprint start (Figure 1). The 
IHPT was validated against a force plate which is the gold standard 
method to assess isometric force. It was found reliable between days 
(intraclass correlation coefficient [ICC] = 0.99 and coefficient of 
variation [CV%] < 2.8%) and within a testing session (ICC ≥ 0.97 and 
CV% < 2%), and with a good degree of sensitivity (Smallest worth-
while change [SWC]: 29 N equal to 5.2%; Standard error of mea-
surement [SEM]: 17 N [95% CI: 14, 20 N] equal to 3.1%) thus 
ensuring consistent and repeatable monitoring procedures of isomet-
ric force production. The IHPT can be easily administered using 
relatively cheap and portable equipment (strain gauge, metallic chain, 
weightlifting belt and carabineer hooks), it is time efficient and re-
quires only a few trials to familiarize [30]. The setup position and 

FIG. 1. Isometric horizontal push test setup and associated force 
outputs. (Reprinted from Dello Iacono et al. The Isometric Horizontal 
Push Test: Test-Retest Reliability and Validation Study. Int J Sports 
Physiol Perform. 2019 Oct 11;1-4. doi:10.1123/ijspp.2019-0357.)
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Sixteen male university sport science students (21.3 ± 0.4 years; 
76.1 ± 4.5 kg; 1.74 ± 0.11 m) and sixteen male professional youth 
football players (22.1 ± 0.8 years; 79.2 ± 7.2 kg; 1.78 ± 0.07), 
members of the U23 team of a Scottish Championship football club 
volunteered to participate to this study. University students were 
recreationally active, practiced concurrent outdoor (i.e., running and 
cycling) and gym-based (i.e., machine-based resistance training ex-
ercises) activities of moderate intensity at least two times a week 
(range: 2–3) for about 60 minutes each. At the time of study com-
mencement, football players had just completed their preseason 
before the start of the 2019/20 competitive season and regularly 
trained between 5–7 times a week for about 90 minutes each ses-
sion. All had at least six years (range: 6–8) of high-level football 
practice and three years (range: 3–5) of resistance training experi-
ence. Written informed consent was obtained after the subjects re-
ceived an oral explanation of the purpose, benefits, and potential 
risks of the study. This study was in accordance with the Helsinki 
Declaration and approved by the Ethics Committee of the University 
in which the study was conducted.

Procedures
Isometric Horizontal Push Test
Following a 10-min standardized warm-up including running drills 
and dynamic stretches, subjects completed three submaximal IHPT 
attempts equal to 60, 70 and 80% of their maximal effort. The IHPT 
assessments were conducted using the same setup (Figure 1) and 
procedures reported by Dello Iacono et al [30]. Heavy weight plates 
were laid on the base of the supporting stand, and nylon webbing 
straps were used to fix its upper end as to ensure that no movement 
occurred in the attached equipment during the test execution. More-
over, all subjects wore the same shoes across the testing days. Three 
maximal trials of 6 s were performed with 3 minutes of passive re-
covery between them. Strong verbal encouragement was provided 
by the same assessor during the trials [4]. The force outputs were 
collected by a portable strain gauge (Chronojump, Barcelona, Spain) 
sampling at 80 Hz. Data were then filtered through a 10 Hz But-
terworth fourth order digital low pass filter as recommended by the 
manufacturer. The initiation of the push action was manually identi-
fied as the first time point corresponding to a force value 5 standard 
deviations (SD) greater than the mean value [4] recorded during the 
preparatory resting position lasting 2 s. The greatest force value at 
any point during the attempts was identified as the peak force. Peak 
force values were then normalized by body mass (N/kg) and used for 
data analysis.

Countermovement Jump
Vertical jump performance was assessed with a CMJ test. Starting 
position was stationary, erect, with knees fully extended and hands 
kept on the waist. Subjects squatted down to a self-selected height 
before beginning a forceful upward motion. Subjects were also in-
structed to avoid flexing hips, knees and ankles throughout the flight 

phase and at touchdown with the aim to limit any effect on jump 
height calculated according the flight time phase duration. Finally, they 
were instructed to jump as high as possible, and verbal encouragement 
was provided during the jumps. Subjects performed three attempts 
with passive recovery of 45 s between jumps, and the best result was 
recorded for data analysis. The jump height (cm) was measured with 
the Optojump apparatus (Optojump, Microgate, Bolzano, Italy).

Standing long jump test
Horizontal jump performance was assessed with a SLJ test [32]. 
Subjects stood behind a take-off line marked on the ground, with 
feet slightly apart. Then, they pushed off the ground vigorously and 
jumped forward as far as possible. A two-foot take-off and landing 
were used with swinging of the arms. SLJ performance was measured 
with a standard measuring tape as the jump distance (cm) from the 
take-off line to the nearest point where the back of the heel landed. 
Three attempts were performed with passive recovery of 60 s between 
jumps, and the best result recorded for data analysis.

Sprint test
Sprint performance was evaluated with a 20 m all-out run [31]. Sub-
jects were asked to assume a three-point start position, with the plant 
hand placed 0.3 m before the starting line. During the attempts, strong 
verbal encouragement was provided. Sprint times was recorded using 
timing gates (Witty system, Microgate, Bolzano, Italy) placed at start 
line and on the 5 m, 10 m and 20 m lines, approximately 0.5 m above 
the ground. The test was performed three times, separated by 2 min-
utes of passive recovery. The best performances over 5 m, 10 m, 
20 m across the three trials were recorded and used for analysis.

Statistical Analyses
The intra-day reliability of the IHPT and dynamic performances were 
examined by calculating the CV% [33] and the Intra-class Correlation 
Coefficient (ICC3,1). A CV < 10% was considered a cut-off value for 
good reliability [34]. ICC values were interpreted as unaccept-
able < 0.5, 0.6 > poor ≥ 0.5, 0.7 > questionable ≥ 0.6, 0.8 > ac-
ceptable ≥ 0.7, 0.9 > good ≥ 0.8 and excellent ≥ 0.9 [35]. The 
assumptions for applying multivariate linear regression modeling 
method were tested. Absolute skewness and kurtosis values smaller 
than 2 also served as indications of normality and lack of obvious 
outliers. Assumption of homoscedasticity was confirmed by visually 
inspecting the scatterplot of fitted values and residuals of the fitting 
model. Multivariate regression modelling was applied to estimate 
changes in outcome variables – athletic performances – as a factor 
of the continuous covariate IHPT and the categorical covariate group 
as follow:

yi = β0 + β1IHPT + β2 group + εi

Where εi denotes changes in the outcome variable; β0 is the coefficient 
of the intercept when IHPT = 0, which was not meaningfully inter-
preted and only included for improvement of the model fit; β1 is the 
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independent-sample t-test. Significance was at p < 0.05. 95% CI 
and Hedges’ g effect size (ES) [37] are reported alongside the p val-
ues. Analyses were performed in Jamovi statistics software (Version 
1.2.27.0).

RESULTS 
Descriptive statistics for all continuous variables of both groups are 
presented as mean ± SD and 95% confidence interval (95% CI) in 
Table 1. The CV% and ICC scores of the intra-day IHPT, CMJ, SLJ, 
5 m, 10 m and 20 m scores were 3.2% (95% CI: 2.8, 3.6) and 
0.89 (95% CI: 0.85, 0.93), 4.5% (95% CI: 4, 5) and 0.77 (95% 
CI: 0.74, 0.80), 3.9% (95% CI: 3.4, 4.3) and 0.81 (95% CI: 0.76, 
0.86), 1.2% (95% CI: 1, 1.4) and 0.91 (95% CI: 0.83, 0.98), 
2.3% (95% CI: 1.9, 2.7) and 0.88 (95% CI: 0.81, 0.95) 2.4% 
(95% CI: 1.9, 2.9) and 0.76 (95% CI: 0.72, 0.80), demonstrating 
good absolute and acceptable to excellent relative reliability, respec-
tively. Results indicated moderate to very strong linear relationships 
between the IHPT outputs and all dynamic performances (all 

coefficient of the covariate IHPT when > 0; β2 is the coefficient of 
the covariate group; εi is the error that represents the deviation of 
the data points from the regression line. The covariate group was 
treated as a binary variable with two categories, athletes and controls, 
and the category controls was considered as reference in the regres-
sion model. This means that the interpretations of the estimate pa-
rameters of the category athletes were made with respect to the 
category controls.

To examine the mutual relationships between the outcome vari-
ables – athletic performances – and the explanatory variable IHPT 
when the covariate group is held constant, we calculated the coef-
ficient of partial determination (partial r2). Qualitative interpretation 
of partial r2 outcomes was reported according to Hokpins [36], with 
values between 0–0.01, 0.01–0.09, 0.09–0.25, 0.25–0.49, 
0.49–0.81, 0.81–1 and equal to 1 (All intervals are of the form 
r2low ≤ r2 < r2high) for trivial, small, moderate, strong, very strong, 
nearly perfect and perfect relationships, respectively. Differences 
between groups in IHPT outputs were analysed using an 

TABLE 1. Descriptive statistics (mean ± SD and 95% CI) of isometric force and dynamic performances variables of both groups.

Test Athletes Controls

IHPT (N/kg) 10.09 ± 1.57 (9.32, 10.90) 6.18 ± 0.89 (5.7, 6.66)

CMJ (cm) 42.8 ± 3.2 (40.6, 44.3) 36.9 ± 3.1 (35.4, 38.4)

SLJ (cm) 208.1 ± 14.6 (201.0, 215.0) 170.8 ± 11.8 (164.5, 177.1)

5m sprint (s) 0.919 ± 0.055 (0.890, 0.948) 1.029 ± 0.046 (1.004, 1.054)

10m sprint (s) 1.784 ± 0.077 (1.742, 1.824) 1.894 ± 0.028 (1.879, 1.908)

20m sprint (s) 2.255 ± 0.100 (2.201, 2.308) 2.398 ± 0.095 (2.347, 2.448)

IHPT: isometric horizontal push test; CMJ: countermovement jump: SLJ: standing long jump; CI: confidence intervals; N: Newton

TABLE 2. Multivariate regression modelling outputs between IHPT scores (N/kg) and athletic background and dynamic performances.

Performance Parameter estimate (95% CI) SE p value partial r2

CMJ (cm) 0.99 (0.13, 1.85) 0.42 .026
.16

A–C 2.01 (-1.98, 5.99) 1.95 .310

SLJ (cm) 7.81 (5.18, 10.44) 1.29  < .001
.56

A–C 6.69 (-5.48, 18.86) 5.95 .270

5m sprint (s) -0.029 (-0.039, -0.019) 0.005  < .001
.54

A–C -0.005 (-0.053, 0.042) 0.023 .813

10m sprint (s) -0.024 (-0.038, -0.009) 0.007 .002
.48

A–C -0.016 (-0.051, 0.083) 0.033 .629

20m sprint (s) -0.048 (-0.071, 0.025) 0.011  < .001
.40

A–C -0.047 (-0.152, 0.058) 0.051 .368

IHPT: isometric horizontal push test; N: Newton; kg: kilograms; CI: interval of confidence; SE: standard error; A: athletes; C: control; 
CMJ: countermovement jump: SLJ: standing long jump; cm: centimetre. Note: positive A–C mean difference scores in CMJ and SLJ, 
and negative A–C mean difference scores in all sprint tests mean better performances in the A group compared to the C group.
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p < .026) (Table 2). Plots of the linear regression analyses between 
the IHPT outputs and the dynamic performances can be observed 
in Figure 2. The percent variance explained by IHPT outputs after 
accounting for groups’ difference was 16% in CMJ, 56% in SLJ, and 
54%, 48% and 40% in 5 m, 10 m and 20 m sprint performances, 
respectively. Significant differences between groups were identified 
for IHTP, with football players (10.09 ± 1.57 N/kg) achieving great-
er (95% CI: 3, 4.84; t = 8.72; p < .001; Hedges’ g = 3.2, large 
ES) force outputs than the controls (6.18 ± 0.89 N/kg).

DISCUSSION 
The aim of this study was two-fold. The primary was to examine the 
relationships between isometric force outputs collected during the 
IHPT and athletic performances measured with common field tests. 
A secondary aim was to determine whether differences in IHPT 
outputs exist between professional youth football players and recre-
ationally active university students. Moderate to very strong linear 
relationships (r2 range: 0.16–0.56) were found between the IHPT 
and all athletic performances (all p < .026). Also, compared to 
controls (6.18 ± 0.89 N/kg), football players (10.09 ± 1.57 N/kg) 
achieved greater IHPT force outputs (p < .001, Hedges’ g = 3.2, 
large ES).

Moderate to very strong linear relationships were detected between 
the IHPT outputs and both jump and sprint performances confirming 

the association between maximal isometric force outputs and ath-
letic performances. By comparing the regression model fit coefficients 
between the IHPT outputs and the athletic performances two inter-
esting outcomes emerged. First, IHPT outputs explain variations in 
both SLJ and sprint performances (partial r2 range: 0.40–0.56) to 
a greater extent and with less margin of error than the CMJ (partial 
r2 = 0.16) (Table 2). This suggests the IHPT as better suited to 
estimate performance of tasks in which the body is horizontally pro-
pelled and require horizontal GRF. This finding is not surprising and 
can be explained by the principle of dynamic correspondence [24]. 
In particular, while the CMJ is performed along the vertical axis and 
relies primarily on vertical GRF, both the SLJ and sprints are hori-
zontal in nature, with greater antero-posterior GRF demands. In this 
context, Kugler and Janshen [38] have reported that the body kine-
matics during a specific task is highly correlated (r = 0.93) to the 
vector of the GRF relative to the body, and more importantly the 
dynamic correspondence is the key determinant for the ability to 
express force along a specific direction. Therefore, the biomechanical 
similarity between the IHPT and both SLJ and sprints can assist 
explaining the stronger relationships with these tasks than the CMJ.

Another interesting finding concerns the pattern of variance ex-
plained by IHPT outputs for changes in sprint performances, which 
decreased as the sprint distance increased (partial r2 equal to 0.54, 
0.48 and 0.4 for 5 m, 10 m and 20 m, respectively). This finding 

FIG. 2. Illustrates the linear relationships between the IHPT outputs and the dynamic performances. 
Individual data points are presented as well as linear regression lines with 95% CI for both groups. IHPT = isometric horizontal push 
test; CMJ = countermovement jump; SLJ = standing long jump.
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to controls (Table 2 and Figure 2). Consistent with the contemporary 
literature [2, 3, 11–16, 25–29, 46, 47], athletes who perform bet-
ter in dynamic tasks are also reported to produce higher isometric 
force levels. This is a finding of practical value as it provides indica-
tion that horizontal force capabilities measured through the IHPT 
represent a relevant physical determinant for participation in sport 
at elite level.

This study has a few limitations worthy of discussion. Firstly, the 
results can only be generalized to male athletes with a team sport 
background. Future research would benefit from testing other popu-
lations like females and athletes competing in individual sport dis-
ciplines. Second, although a priori power analysis was conducted to 
determine the necessary sample size, only sixteen U23 professional 
football players participated to this study which narrows what can 
be concluded with regard to younger and less trained or profes-
sional adult high-level football players. Third, this study adopted 
a correlation design aimed at investigating the relationships between 
the IHPT force outputs and dynamic performances. Future longitu-
dinal interventions are then warranted to determine if increases in 
IHPT force production translate to improvements in performance in 
athletic tasks. Finally, we used only peak force outputs as primary 
outcome without evaluating specific force-time variables which may 
could be used to investigate the sensitivity of this test as a monitor-
ing tool.

CONCLUSIONS 
This study identified that isometric peak force measured during the 
IHPT is related to measures of dynamic performance in both profes-
sional youth football players and recreationally active university stu-
dents. Moreover, football players produced greater IHPT outputs 
compared to recreationally active controls. Sport scientists and prac-
titioners should consider implementing the IHPT to measure maximal 
horizontal force production capabilities in a simple and time efficient 
manner. For example, the IHPT could be used to measure isometric 
force capabilities alongside the assessment of dynamic performanc-
es or when the latter are not feasible or impractical. Moreover, the 
ease to administer and immediate interpretation of the IHPT results, 
make it a suitable approach also to monitor large groups of athletes.
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can be explained by the greater biomechanical similarities between 
IHPT and the initial acceleration phase (i.e., 5 m) of the sprint. Dur-
ing this phase, the body leans forward in a crouched position with 
an overall geometric configuration and specific joints’ configurations 
more similar to those assumed during the IHPT execution. Con-
versely, such dynamic correspondence is lost during the late stages 
of the sprint (i.e., 10 m and 20 m) as the body progressively moves 
into an upright position [31, 39]. These changes of body configura-
tion couple with characteristic kinetic patterns. Specifically, a concur-
rent and progressive shift of the resultant GRF vector from a hori-
zontal into a more vertical direction occurs as the sprint distance 
increases. Computational and observational studies have confirmed 
this assumption by examining the changes in the ratio of forces (i.e. 
horizontal component of the GRF vector expressed as a percentage 
of the total GRF vector magnitude) across consecutive contact phas-
es during sprint trials of same distances as those investigated in this 
study [18, 39–41]. Moreover, it is plausible that the discrepancy 
across the relationships is associated with the time available to 
develop force during sprint tasks of different distances. In fact, foot 
contact time during the acceleration phase of sprinting is about 
300 ms and progressively decreases to 90–100 ms at top speed [42]. 
The length of time for force production during the acceleration phase 
is sufficient to achieve high absolute levels of force, potentially sim-
ilar to the peak force outputs exploited during the IHPT (Figure 1). 
In contrast, it is unlikely that maximal horizontal force outputs can 
be achieved in shorter intervals of time as running speed increas-
es [43]. The findings of this study confirm the meaningful relationships 
between isometric horizontal force production and horizontally ori-
ented athletic performances.

The results of this study revealed between-group differences in 
IHPT outputs as football players achieved greater scores than the 
controls (10.09 ± 1.57 vs 6.18 ± 0.89 N/kg, large ES). This find-
ing aligns to what is generally reported in the sport literature where-
by maximal isometric force levels can distinguish athletes from rec-
reationally active populations [44]. Different force outputs between 
groups may be largely explained by the exposure to high-intensity 
practice including accelerations, decelerations, sprints and changes 
of direction that football players and not controls routinely perform 
during training and competition. In fact, these locomotive demands 
represent part of the conditioning stimuli underpinning physical de-
velopment and performance maintenance [45], and the likely dis-
criminant factor contributing to the superior force levels of football 
players than controls observed in this study. We note that the between-
group differences in force levels should be interpreted further by 
considering the relationships between IHPT outputs and all athletic 
performances after accounting for the background of the subjects of 
this study. While IHPT outputs can be used to estimate athletic 
performances likewise across athletes and controls, we observed 
a consistent pattern, from which superior athletic performances are 
expected for each unit increase in IHPT among athletes compared 
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