eISSN: 2449-8580
ISSN: 1734-3402
Family Medicine & Primary Care Review
Current issue Archive Manuscripts accepted About the journal Editorial board Reviewers Abstracting and indexing Subscription Contact Instructions for authors Publication charge Ethical standards and procedures
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
3/2024
vol. 26
 
Share:
Share:
Original paper

Immunopathological role of MiR-326, viral infection and IL-17 concentration in multiple sclerosis patients

Baydaa M. Abaas
1
,
Mayyada F. Darweesh
2

  1. Department of Soil, Faculty of Agriculture, AL-Qasim green University, Babil, Iraq
  2. Department of Microbiology, Faculty of Science, University of Kufa, Najaf, Iraq
Family Medicine & Primary Care Review 2024; 26(3): 285–290
Online publish date: 2024/09/30
Get citation
 
PlumX metrics:
 
1. Baskaran AB, Grebenciucova E, Shoemaker T, et al. Current Updates on the Diagnosis and Management of Multiple Sclerosis for the General Neurologist. J Clin Neurol 2023; 19(3): 217–229.
2. Greenfild AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol 2018; 83: 13–26.
3. Rafiee Zadeh A, Ghadimi K, Mohammadi B, et al. Effects of estrogen and progesterone on different immune cells re-lated to multiple sclerosis. Caspian J Neurol Sci 2018; 4: 83–90.
4. Wang K, Song F, Fernandez-Escobar A, et al. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci 2018; 356(6): 552–560.
5. Kamma E, Lasisi W, Libner C, et al. Central nervous system macrophages in progressive multiple sclerosis: Relation-ship to neurodegeneration and therapeutics. J Neuroinflamm 2022; 19(1): 45, doi: 10.1186/s12974-022-02408-y.
6. Donati D. Viral infections and multiple sclerosis. Drug Discov Today Dis Model 2020; 32: 27–33.
7. Najafi S, Ghane M, Poortahmasebi V, et al. Prevalence of Cytomegalovirus in Patients with Multiple Sclerosis: A Case-Control Study in Northern Iran. Jundishapur J Microbiol 2016; 9(7): e36582, doi: 10.5812/jjm.36582.
8. Dominguez-Mozo MI, Casanova I, De Torres L, et al. microRNA Expression and Its Association with Disability and Brain Atrophy in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Front Immunol 2022; 13: 904683, doi: 10.3389/fimmu.2022.904683.
9. Basak J, Majsterek I. miRNA-Dependent CD4 (+) T Cell Differentiation in the Pathogenesis of Multiple Sclerosis. Mult Scler Int 2021, 2021; 8825588, doi: 10.1155/2021/8825588.
10. Wang L, Liang Y. MicroRNAs as T Lymphocyte Regulators in Multiple Sclerosis. Front Mol Neurosci 2022; 15: 865529.
11. Wang X, Zhou H, Cheng R, et al. Role of miR-326 in neonatal hypoxicischemic brain damage pathogenesis through targeting of the δ-opioid receptor. Mol Brain 2020; 13(51), doi: 10.1186/s13041-020-00579-4.
12. Reyes-Mata MP, Mireles-Ramírez MA, Griñán-Ferré C, et al. Global DNA Methylation and Hydroxymethylation Levels in PBMCs Are Altered in RRMS Patients Treated with IFN-β and GA-A Preliminary Study. Int J Mol Sci 2023; 24(10): 9074.
13. Yusuf FLA, Wijnands JMA, Karim ME, et al. Sex and age differences in the Multiple Sclerosis prodrome. Front Neurol 2022; 13: 1017492, doi: 10.3389/fneur.2022.1017492.
14. Dias de Sousa MA, Desidério CS, da Silva Catarino J, et al. Role of Cytokines, Chemokines and IFN-y+ IL-17+ Double-Positive CD4+ T Cells in Patients with Multiple Sclerosis. Biomedicines 2022; 10(9): 2062, doi: 10.3390/biomedicines10092062.
15. Mechelli R, Romano C, Reniè R, et al. Viruses and neuroinflammation in multiple sclerosis. Neurosciences 2021; 8: 269, doi: 10.20517/2347-8659.2021.01.
16. Al-Sabbagh J. The Role of Cytomegalovirus (CMV) and Vitamin D in Multiple Sclerosis (MS): Medico Legal Update 2020; 20(1), doi: 10.37506/mlu.v20i1.471.
17. Darweesh MF, Al-Sherify AM, Mezher MN. Comparative Study of Human Herpesviruses 6, 7 and Cytomegalovirusin Patients with brain tumors. Int J Pharm Res 2019; 11(2): 60–66.
18. Shivam J. Role of interleukin-17 signaling pathway in the interaction between multiple sclerosis and acute myocardial infarction. Mult Scler Relat Disord 2022; 58: 103515, doi: 10.1016/j.msard.2022.103515.
19. Abd WS, Abd Al Kareem RM. Impact of EBV on multiple sclerosis in some of the Iraqi males: Immunological and mo-lecular study. AIP Conf Proc 2020; 2290: 020023, doi: 10.1063/5.0027964.
20. Reed MD, Yim YS, Wimmer RD, et al. In ivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Nature 2020; 577: 249–53.
21. Setiadi AF, Abbas AR, Jeet S, et al. IL-17A is associated with the breakdown of the blood-brain barrier in relapsing-remitting multiple sclerosis. J Neuroimmunol 2019; 332: 147–154.
22. Di Filippo M, Mancini A, Bellingacci L, et al. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Rep 2021; 37(10): 110094.
23. Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11): 1133–1141, doi: 10.1038/ni1261.
24. Horakova D, Zivadinov R, Weinstock-Guttmann B, et al. Environmental factors associated with disease progression after the first demyelinating event: Results from the multi-center SET study. PLoS ONE 2013; 8(1): e53996, doi: 10.1371/journal.pone.0053996.
25. Do Olival GS, Lima BM, Sumita LM, et al. Multiple sclerosis and herpesvirus interaction. Arq Neuropsiquiatr 2013; 71(9-B): 727–730, doi: 10.1590/0004-282X20130160.
26. Hussein D, Darweesh M. Role of EBV infection in Type-1 Diabetic nephropathy pathogenesis with related to IL-12 level in patients. BIO Web of Conferences 2023; 65(05041), doi: 10.1051/bioconf/20236505041.
27. Azimi M, Ghabaee M, Naser Moghadasi A, et al. Altered Expression of miR-326 in T Cell-derived Exosomes of Patients with Relapsingremitting Multiple Sclerosis. Iran J Allergy Asthma Immunol 2019; 18: 108–113.
28. Baulina N, Kulakova O, Kiselev I, et al. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317: 67–76, doi: 10.1016/j.jneuroim.2018.01.005.
29. Honardoost MA, Kiani-Esfahani A, Ghaedi K, et al. miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing–remitting multiple sclerosis. Gene 2014; 544: 128–133, doi: 10.1016/j.gene.2014.04.069.
30. Zahednasab H, Balood, M. The role of miR-326 and miR-26a in MS disease activity. Gene 2014; 548: 158, doi: 10.1016/j.gene.2014.07.014.
31. Du C, Liu C, Kang J, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 2009; 10(12): 1252–1259.
Copyright: © 2024 Family Medicine & Primary Care Review. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License (http://creativecommons.org/licenses/by-nc-sa/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited and states its license.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.