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Abstract

The paper describes the current knowledge about the role of oxidative stress in the pathogenesis of
chronic obstructive pulmonary disease and its role in the development of emphysema. The basic mechanisms
leading to overproduction of free oxidant radicals in tobacco smokers’ airways are underlined.
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Introduction

Chronic obstructive pulmonary disease (COPD) has
been defined as a disease characterized by progressive, not
fully reversible, airflow limitation, associated with an
abnormal inflammatory response of the lungs to noxious
particles and gases, especially to tobacco smoke [1]. COPD
is characterized by chronic cough due to excessive mucus
production (chronic bronchitis) and/or alveolar destruction
leading to increased airspaces, known as emphysema.

Emphysema is a pathologic term defined as the abnormal
permanent enlargement of airspaces distal to the terminal
bronchioles, accompanied by destruction of their walls and
without obvious fibrosis [2, 3]. Emphysema may be associated
with cigarette smoke—induced COPD. The exposure to
tobacco smoke elicits a chronic inflammatory response which
leads to the tissue destruction associated with pulmonary
emphysema and chronic bronchitis [2, 3]. This inflammatory
response is characterized by pulmonary infiltration, for the
most part involving macrophages, neutrophils and CD8+
T cells [4]. Smoke — activated phagocytic cells are potent
source of oxidants in the lungs.

Oxidative stress

Cigarette smoke may activate some of the molecular
signaling pathways involved in cellular sensing of environ-
mental stresses, such as those triggered by starvation,
radiation, or hypoxia, leading to progressive disruption of
organ maintenance, with the undesirable activation of
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apoptotic and inflammatory responses that characterize the
alveolar destruction observed in emphysema [5, 6]. Cigarette
smoke exposes the lung to extreme levels of oxidative stress
[7]. It is estimated that each cigarette puff contains 1014 free
radicals [7]. These smoke-derived oxidants damage epithelial
cells of the lower respiratory tract by causing direct injury to
membrane lipids, proteins, carbohydrates and DNA. The
importance of oxidative stress has been confirmed by several
studies that have identified the presence of markers of free
radical damage in patients with COPD. Increased levels of
8-hydroxy-deoxyguanosine were detected in the urine of
COPD patients and elevated levels of 3-nitrotyrosine and
lung lipid peroxidation products were noted in the airway
cells and epithelium of COPD patients and these markers
demonstrated a strong correlation with disease severity as
measured by FEV, [8-11]. Cigarette smoke exposure induced
the expression of IL-1f, IL-8 and GM-CSF in human
bronchial epithelial cells via the activation of both the
NF-xB and MAPK pathways [8, 12]. Importantly, the smoke-
mediated induction of MAPK and NF-kB signaling in these
cells was blocked by the administration of the antioxidant
epigallocatechin gallate [8, 13]. This data indicates that redox
factors have a vitally important role in modulating intra-
cellular signaling events that regulate the inflammatory
responses to cigarette smoke exposure. In addition to its
inflammatory effects, oxidative stress promotes alveolar cell
apoptosis and emphysema formation by blocking the binding
of vascular endothelial cell growth factor to its receptor [8,
14]. Thus, the oxidant/anti-oxidant balance in the lung has
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critical effects on the inflammatory and apoptotic responses
that are involved in this disease. The binding of TNF to the
TNF receptor (TNFR) has been linked to apoptosis, pro-
liferation and the activation of NF-xB and c-Jun N-terminal
kinase [8, 15]. By affecting these key cell-signaling processes,
TNF is able to induce the development of smoking related
lung diseases [8, 16-18]. TNF-a levels are elevated in the
lungs of smokers and COPD patients and the absence of the
TNF receptor renders mice resistant to smoke-induced
inflammation [8, 16, 19, 20]. Moreover, animal studies have
shown that mice lacking the TNF receptors are protected
against both elastase and cigarette smoke-induced emphy-
sema [8, 21-23]. Though TNF is critical in the pathogenesis
of COPD, the mechanisms by which cigarette smoke alters
TNF signaling remain to be determined. Several studies,
however, indicate that oxidants have a central role in this
process [8, 24, 25]. These smoke-derived oxidants trigger
TNF signaling by directly stimulating the receptor or by
activating TNF-receptor associated proteins and TRAF2
(TNF receptor associated factor-2) [8, 25, 26]. In addition,
reactive oxygen species cause apoptosis signaling kinase-1
(ASK-1), a MAP kinase that is triggered by TNF, to
dissociate from thioredoxin thus freeing it to activate c-Jun
N-terminal kinase [8, 27-29]. Aside from enhancing the
phosphorylation of c-Jun N-terminal kinase, oxidants are
capable of sustaining this signaling by inactivating MAPK
phosphatases (MKPs) that return c-Jun N-terminal kinase to
its basal state [8, 30]. Importantly, oxidants can cooperate
with TNF in the activation of both NF-xB and AP-1 [31, 32].
This is critical since the activation of these transcription
factors have been linked to cigarette smoke-induced lung
inflammation [8, 18, 33]. The lung has a rich network of
enzymatic antioxidants to protect itself from this oxidative
burden including superoxide dismutase (SOD) and gluta-
thione peroxidase (GPX) [8, 34]. SOD1 which is located in
the cytosol and is the primary SOD of the lung detoxifies
superoxide by converting it to hydrogen peroxide [8, 35].
This can then be further detoxified by enzymes like GPX
which convert hydrogen peroxide into water [8, 36]. Indeed,
the classical GPX, GPX1, has anti-inflammatory properties
in mice [8, 37, 38]. and can prevent the stress-induced
activation of MAPK proteins in vivo [8, 39]. The major
consequence of the oxidative stress is the activation of the
transcription factor nuclear factor-xB, which activates
proinflammatory cytokine transcription [40-42]. Recent
evidence suggests that cigarette smoke inhibits histone
deacetylase, further promoting the release of proinflammatory
cytokines [43]. Therefore, oxidant injury and lung inflam-
mation act in concert to increase alveolar destruction or
compromise maintenance and repair of alveolar structure.

Conclusion

Over the past decade, we realized that emphysema is not
caused by a single cell type or proteinase but that multiple
inflammatory and immune cells including oxidative stress
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mediators are involved and we are now trying to determine
how they interact in a complex network of interactions and
relationships between immune function, inflammation,
proteolytic burden, infection and apoptosis to contribute to
lung destruction in COPD. Inflammation in COPD is marked
by the presence of increased numbers of macrophages and
neutrophils in the lung [44] and lymphocyte infiltration with
enhanced accumulation of CD8+ T cells is a prominent
finding [45-47]. Macrophages and neutrophils have been well
studied and appear to play a role in the pathogenesis of COPD
through the release of proteinases that alter the extracellular
matrix [44]. Macrophages and neutrophils are prominent in
chronic inflammatory conditions of the lung including
emphysema [45, 46]. Investigators demonstrated that macro-
phages have the capacity to produce both cysteine proteinases
(cathepsins) and matrix metalloproteinases (MMPs) capable
of elastolysis [45, 46]. The chronic pulmonary inflammation
of COPD is believed to result in progressive respiratory
disorders. The pathogenesis of inflammation, airway remo-
deling, and destruction of the alveolar unit in COPD is
complex and not completely understood. Human emphysema
develops over decades of ongoing cigarette smoking or
exposure to environmental pollutants Further studies are
needed to solidify and define a complex network of inflam-
matory and immune cell interactions in chronic destructive
lung disease and may allow therapeutic targeting to interrupt
this pathologic process in humans.
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