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Abstract

All those who like experimentation are sooner or later faced with a need of random
selection of elements or objects of interest that they want to study (persons, patients,
animals, cells, etc.). Randomization, a basic requirement in appropriate planning of
experiment, may be performed either to select series of randomly assigned
elements/objects or to allocate the studied objects to a given group, medical or
diagnostic procedure, treatment protocol, etc. The principal advantage of random
selection is to minimize effects of bias and confounding variables, two fundamental
threats known to weaken research credibility. Simple, unrestricted random selection
can lead to undesirable imbalance in baseline characteristics, thus affecting any
credible reasoning. Restricted randomization (with blocking or stratification) includes
procedures used along with random sampling that help to achieve balance between
study groups in their baseline characteristics or in size. For all researchers conducting
biomedical studies randomization ensures a straightforward and reliable analysis of
the outcomes, and enables any further generalization of their findings.

Key words: experiment, randomization, (bio)medical study, bias, confounder, blocking,
stratification.

One of the researcher’s fundamental natural behaviors and expectations
is to extrapolate the outcomes and conclusions of a certain study performed
on selected examined groups of objects to larger, more general population.
The easiest solution, we might think about ad hoc, would be to include
under study as many objects as possible, to make our generalization possibly
the most reliable. For numerous reasons, including the economic
reasonability, such an approach is certainly beyond any limits we could
rationally cope with. Any other solutions force us to approximate, round up
and rely on certain assumptions.

Randomization is one of the most common basic assumptions used to
enable any further generalization of our findings. Any conclusions derived
from studies devoid of appropriate randomization protocol may refer
exclusively to the group of elements under study and cannot be any more
universal or extrapolated towards larger groups. In other cases, our
reasoning and conclusions may very likely be false.

Below, you will find arguments that the demand of randomization in
research is not a pure personal whim or addiction. It is a need for mature
scientific research. This need has been glorified through years by unambiguous
scientific evidence, showing that our research is as good as the imagined
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experimental design of what we are planning to
perform. Requirement of randomization, previously
more a perplexing demand, recently evolved to the
status of ally for researchers conducting biomedical
studies. Thus, this fundamental step in experimental
design truly became a fact and is no longer regarded
as merely the fashion, represented by a minority of
researchers, who do not dislike too much a statistical
approach to experimentation.

Randomization — what do we need it for?

The procedure of randomization means the
selection of elements or objects under study (persons,
patients, animals, cells, etc.) by pure chance, without
a possibility to predict a given choice. Random
selection is a basic requirement in appropriate plan-
ning of experiment and it ensures a straightforward
and reliable analysis of the outcomes. It means for the
researcher an objective and reliable selection. To give
a brief answer to the question “why do we need to
randomize?” we may state that we insist on selecting
the objects under study at random in order to express
general conclusions (referring to a general population)
based on particular outcomes (referring to a small
fragment of a general population). By random sam-
pling we guarantee that the observed characteristics
closely reflect the characteristics of a whole popula-
tion; we say that our group is statistically representative
to a general population. Thus, we save our energy,
time and — very importantly — money, when investi-
gating a “well-cut,” representative portion instead of
a whole population [1].

Randomization may be performed either to select
series of randomly assigned elements/objects or to
allocate the studied objects to a given group, medical
or diagnostic procedure, treatment protocol, etc.

Below are typical examples of random selection(s)
in medical studies:

1. 500 women over 60 years of age, with family names
beginning with G through P, inhabiting Poznan City,
were randomly selected from the alphabetical lists
delivered by Poznan registration offices. Each
individual was sent a questionnaire, and the study
was based on the assumption of a reply from at
least 300 responders.

. Fifty consecutive patients with pulmonary edema
were randomly allocated to the group receiving i.v.
infusion of nitroglycerine (NG) or to the group
receiving oral NG administration repeated every 5
min. Random selection to either group was
performed by drawing balls from the bag
containing initially 25 white and 25 black balls.

. In'a multi-center trial the body height was recorded
in active working adults applying to regional
outpatient clinics of occupational medicine. In each
clinic the first 100 incoming patients were enrolled.
Since 99 clinics participated in the study in a whole
country, data on 9900 patients were recorded.
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How to plan an experiment —I. Randomization

Tools for random selection

The random selection may be secured by several
techniques, including:
e tossing a coin or rolling a die;
for those interested in rolling more than one die at
a time or using more than 6-sided dice, we recom-
mend two web addresses:

— http://images.google.pl/imgres?imgurl=www.neo
phyre.com/msc/rdrljpg&imgrefurl=http://www.neo
phyre.com/msc/rdr3.html&h=249&w=177&sz=14
&tbnid=y4y)5pUQJr8):&tbnh=105&tbnw=75&start
=1&prev=/images%3Fq%3Drandom%2Bdice%26hl
%3Dpl%261r%3D%26ie%3DUTF-8%260e%3DUTF-
8%265a%3DG

—http://images.google.pl/imgres?imgurl=faculty.
haas.berkeley.edu/mss/tools/dice_la.gif&imgrefurl
=http://faculty.haas.berkeley.edu/mss/tools/tools ra
nddice.htm&h=302&w=304&sz=3&tbnid=iA1K_CA
V7ck):&tbnh=111&tbnw=111&start=13&prev=/imag
es%3Fq%3Drandom%2Bdice%26h1%3Dpl%261r%3D
%26ie%3DUTF-8%260e%3DUTF-8%2652%3DG

« pulling out different colored balls from a bag; each
color representing a given group of allocation (e.g.
treatment); the balls taken out may then be given
back or not to a bag; in the first case we ensure a
continuous selection at random; however, we
cannot assure the equal size of groups; on the
other —when placing the equal numbers of balls
representing each of the groups — we gradually lose
randomness — with each subsequent pulling we
make the total number of possible selections
smaller, thus reducing randomness;

« selection of envelopes containing an indication of
a medicine or placebo;

e computer software;

It is probably the most favored approach nowadays,
although not always the most suitable for our
practical needs. Various computer statistical packages
have been developed to look for non-randomness
and to offer well researched algorithms (“random”
number generators) providing extremely long series
of numbers for which there is an infinitesimally small
probability of finding a repeating pattern. Importantly,
most “quick” random number generators, including
those supplied with computer language compilers,
often use over simple methods, which produce
sequences of numbers with repeating patterns; these
are unacceptable for statistical use and should be
avoided.

Random number generators require the so-called
seed number [the number used to start with when
generating (pseudo-)random series of numbers]. This
specific “anchor” number is provided by a computer
or given by the user. However, even when you have
the opportunity to enter your own seed number, you
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should rather use the default one (given by the
program) in most cases. Why? We should note that
each seed generates its own series of numbers and
that series is the same if you use the same seed
again. In other words, if the generator is given the
same seed each time it is called then it will produce
the same series of numbers. This is not acceptable
for many purposes, and therefore, the random
number generator needs to be reseeded each time
it is used, to lower the risk of using the same
(pseudo-)random number series for different rando-
mizations procedures. How is such a risk minimized
by computer software? The algorithm of (pseudo-)
random number generation is based upon our
computer’s clock. Very often, the computer-selected
seed is the number of hundredths of a second which
have elapsed since the last midnight. Hence, it seems
highly improbable that any software will produce the
same “random” sequence more than once [2, 3];
e asimple “wild guess”.

In the case of very large studied groups the
random selection may be replaced by a simple
inclusion of consecutive patients. How to make sure
—at any given stage of our random selection —that
we are really close to be “incidental” at such a
selection? Probably, the easiest practical way is to
verify the distribution of some continuous variables
assigned to selected objects. A normal distribution
of data may be considered a very good recognition
that our objects are randomly selected [4, 5].

Advantages of randomization

We probably profit most from using randomiza-
tion by minimizing two fundamental threats that are
known to weaken the credibility of our research:

* bias, and

 confounding variables.

The bias is a kind of a systematic error leading to
an incorrect estimate (underestimate or overestimate)
of the investigated effect or association. Numerous
factors (of researcher’s interest or not) can bias the
outcomes of our study in such a way that they cancel
out, reduce or amplify a real effect(s), which we are
trying to describe.

There are several types of bias, and the most
commonly encountered are:

e selection bias; occurs e.g. when investigating
inhabitants of a small alpine village to describe the
characteristics of central European population, or
when we try to allocate the most healthy
individuals to the treatment that we intend to
prove is the best;

« observation bias; may occur when collecting data
(e.g. it is more likely on questioning that healthy
subjects underreport their alcohol intake compared
to patients with coronary heart disease; women
with complicated pregnancies are more likely to

declare the prior use of oral contraceptives),
interviewing participants (e.g. the style of interview
may provoke some answers over others, different
responders may give different answers to the same
questions) or failure to classify properly;
systematic bias; occurs e.g. when performing the
tests on treatment 1 in winter, while the tests on
treatment 2 in summer;

accidental bias; occurs e.g. when taking first out of
the cage(s) the laboratory animals given one
treatment, and the remaining animals for another
treatment;

inability to follow up; occurs e.g. when patients in
poorer clinical condition are not able to continue
their participation in a study, whereas healthier
individuals are more likely to complete the protocol;
cheating by the experimenter; may not always be
badly intentioned by a researcher; occurs for example
in the cases when the experimenter decides to (a)
simplify his/her task and make life a little easier by
performing a test first in all participants with families
beginning with C, and then in all with families
beginning with D; (b) select a patient to a trial if the
participant would particularly benefit from a tested
medical treatment; (c) give an extra does of
acetylsalicylic acid to those patients who are at the
highest risk of re-occlusion; (d) balance the numbers
of selected objects over some nuisance variable(s)
without troubling a statistical expert.

We can of course minimize or combat the

unwanted bias through:

« selecting more than one reference (control) group;

e standardizing of our observations using blin-
ding/masking procedures for subject/observer
(single blind), both subject and observer (double
blind) or subject, observer and analyst (triple blind);

« using multiple sources of information and verifying
their corroboration;

e using dummy variables with recognized
interactions and associations with other variables
(parameters).

Confounding variables (confounders) are those
variables that are associated with both the cause
(modifying factor, exposure or risk factor in
epidemiology) and the effect(s) (outcome, result or
consequence, disease in epidemiology). Although
confounders often predict the effect(s) (disease) very
well and they may (or may not) be a part of the real
association between a cause and an effect (exposure
and disease), they are not a real part of what we are
after when investigating a given association of interest.
For example, when examining the association between
sedentary behavior or occupation and development
of cardiovascular complications, we have to controlin
our multiple regression analysis model for both obesity
and smoking, since these two confounders are
unequally distributed between people who show
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sedentary behavior. Obese people tend to spend more
time in the sitting position, while smokers are usually
more mobile and physically active. Similarly, light hair
color well predicts coronary heart disease when
analyzed by multivariate statistical methods, because
it is unequally distributed between people of different
ages: elder people, who are at a higher risk of heart
disease, usually have gray hair, just opposite of younger,
who are at much lower risk for heart disease and are
very seldom gray. Thus, light hair color confounds our
thinking about heart disease because it is not a real
cause of this disease. Other confounding variables and
very typical of biomedical research are e.g. age
structure or sex proportions of the studied population.
The optimal situation for each researcher would
be of course to maximally control (or standardize)
for the occurrence of confounders, which is possible
only when they are known and measurable. The
most common strategies to reduce the influence of
confounding variables are:
* randomization: to ensure random distribution of
confounders between the groups under study;
e matching and adjustment: to ensure equal
distribution of confounders and group homogeneity;
the appropriate adjustment may be distorted by
choosing a standard;
restriction of inclusion criteria: to ensure the exclusion
of individuals with (numerous) confounding factors,
each of which may constitute the risk bias in itself;
stratification: to ensure that potential confounders
are distributed evenly within each stratum (smaller
part of the population under study; see below);
post hoc multivariate analysis: to standardize
(control) for those confounders that we are able to
identify and measure; the aim of these analyses
(so-called adjusted analyses) in biomedical research
is to control (adjust) for some baseline imbalances
in important patient characteristics. A similar
approach may be used also to adjust significance
values to take account of multiple testing known to
increase the probability of making a type I error, i.e.
attributing a difference to an intervention when a
pure chance is the more likely explanation [1, 2].

Types of randomization

Randomization may be either simple or restricted.
Unrestricted, simple randomization can lead by chance
to undesirable imbalance in baseline characteristics
(the values of demographic, clinical, laboratory or other
variables collected for each participant at the beginning
of the study, but before the intervention is
administered), including the so-called prognostic
variables (those variables that are prognostic in the
absence of intervention). This of course may affect the
outcomes and weaken the credibility of researcher’s
reasoning. We try to protect our study against such
imbalances by using either a restricted randomization
model (e.g. stratification) or minimization.

How to plan an experiment —I. Randomization

Restricted randomization refers to any procedure(s)
used along with random sampling that helps to
achieve balance between study groups in their
baseline characteristics or in size. To achieve these
goals we have two statistical “tricks” at our disposal:
blocking or stratification. Regardless of which of
these two is used, we have to be aware that
improved balance always comes at the cost of
reducing the unpredictability of the sequence of
random numbers. Thus, we always achieve one aim
(reducing imbalance) at the cost of the other
(reducing randomness) [1-3, 6].

Blocking

This operation is aimed to ensure close balance in
the size of each group at any time during the study.
Blocking renders that comparison groups will be of
approximately the same size. Blocking performed on
every 20 participants would result in the allocation of
10 individuals to one treatment and 10 to another.
Each block contains a random sequence of the
interventions 1 and 2, however, it is possible to deduce
some of the next treatment allocations if we know
the block size. Therefore, although we achieve better
within-group homogeneity (matching), we encounter
the reduced randomness and unpredictability. To at
least partly ameliorate this problem, we may blind the
interventions, use blocks of larger sizes, or use blocks
of randomly varying sizes.

Stratification

Stratification is another approach to overcome
the problem of imbalance concerning baseline
characteristics of groups under study. This is a
particular problem in small groups of participants,
which by chance may not be well matched for some
baseline parameters, like age, sex proportions,
therapy, stage of disease, etc. We can try to avoid
such imbalances by improving the matching of a
distribution of a given variable among several
compared groups; however, there is always a risk of
how to do it without sacrificing the advantages of
random sampling and losing study credibility.
Stratified randomization is achieved by performing
a separate random sampling within each of
examined subsets of participants. It is a kind of
restriction implemented in randomization procedure.
The random assignment (allocation) of participants
occurs within smaller groups defined by some basic
parameters in a population. For example, we can
stratify for age, sex, severity of disease or research
center (like in multicenter trials): each parameter
used to create the subset of data is considered a
stratum. The appropriate stratification requires, of
course, the prior blocking within strata (adjusting
sample size), since without blocking the procedure
is ineffective. Thus, the stratified random sampling
ensures that not only the numbers of individuals
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receiving each intervention are closely balanced
within each stratum, but also that there is a good
balance in participants’ characteristics across
intervention groups. Stratified blocked randomization
enhances the power of small trials by reducing the
variation in outcome due to chance disproportions
in baseline parameters. It is of little benefit in large
trials (1000 subjects and more), where chance
assignments ensure nearly even distributions of
baseline parameters. The limitation of stratified
blocked randomization may be the relatively small
number of baseline parameters (usually not more
than 2-3) that can be balanced.

Below, are the most popular experimental demands
for using randomized sampling (generators for some
of them may be found at given web addresses) [6]:

1. Randomizing a simple series of data. It is a very
commonly used procedure to select a smaller
population from a larger one. For example, we can
use this model in a medical research if we want to
randomize the selection of a source population of 10
participants from a target population of 50 individuals.
The useful tool for doing this can be found at
http://www.wecrl.ars.usda.gov/cec/java/r91-fig3.htm:

24 7 30 29 44 18 28 32 38 36

2. Allocating samples to different treatments; may
have several variants, including those presented
below:

» random allocation to two independent groups; the
simplest model used in randomized controlled
trials (RCT) to allocate some subjects to receive the
new treatment and the other subjects to receive
the control treatment (e.g. reference drug or
placebo);

matching of samples in a sequential order evenly to

several treatments; generator, which can be found at:

http://www.wcrl.ars.usda.gov/cec/java/sequence.htm,
takes a sequence of numbers representing a series
of samples and divides them at random into
several groups (each containing the same number
of samples) representing different treatments. For
example, to allocate 25 volunteers to 5 treatments
with different inhibitors of HMG-CoA reductase
(statins) we may use the following experimental
design:
—statin 1: 1, 6, 15, 18, 21,
—statin 2: 4,9, 11, 20, 25,
—statin 3: 2, 8, 14, 16, 24,
—statin 4: 5, 10, 12, 17, 22,
—statin 5: 3, 7, 13, 19, 23.

selecting items representing n categories to k
treatments; generator can be found at:
http://www.wecrl.ars.usda.gov/cec/java/seq2.htm.
Example: we plan to investigate the effects of 5
different hypoglycemic agents in outpatient clinic
individuals registered in local diabetological units

in 4 villages (A-D): 41 persons from the village A,
21 from the village B, 11 from the village C and 24
from the village D. Random selection may give a
following solution:

treatment 1: A13 A39 A34 A30 A27 A11 A14 A32 B13
B9 B21 B8 C11 C7 D7 D17 D24 D18

treatment 2: A25 A4 A33 A35 A12 A3 A22 A36 B17
B15 B18 B5 C10 C1 D16 D21 D10 D22

treatment 3: A7 A21 A26 A41 A6 A28 A24 A18 B20
B19 B14 B1 C4 C9 D8 D9 D6 D14

treatment 4: A9 A23 A37 A5 A29 A10 A2 A31 B6 B16
B12 B10 C5 C2 D15 D1 D19 D13

treatment 5: A15 A20 A19 A1 A8 A40 Ale A38 B4
B2 B11 B3 C6 C8 D3 D11 D2 D4

block randomization to k treatments; random
allocation in blocks is made in order to keep the
sizes of treatment groups similar; we have to
remember to specify a sample size that is divisible
by the chosen block size, and a block size that is
divisible by the number of treatment groups
(treatments).

Example: we want to allocate 20 cardiovascular
patients to the treatments with two antiplatelet
(AP) drugs: either acetylsalicylic acid or Clopidogrel
(treatment 1 or 2); we decide to match up the
participants in blocks of 4 patients each in order
to limit the influence of confounding factors (e.g.
sex, age) from hiding a real difference between two
treatments.

block 1
patient AP drug
1 2
2 1
3 1
4 2
block 2
patient AP drug
5 1
6 2
7 1
8 2
block 3
patient AP drug
9 1
10 2
11 2
12 1
block 4
patient AP drug
13 2
14 1
15 2
16 1
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block 5
patient AP drug
17 1
18 1
19 2
20 2

How to assort the suitable block size may be a real
dilemma for the beginners with randomization. On
the one hand, the advantage of small block sizes is
that it is easy to achieve almost perfect balance,
which means that treatment group sizes are very
similar. However, we also remember the principal
inconvenience of such an approach: with small block
sizes we are likely to guess some allocations, so we
lose the advantage of randomness and blinding. On
the other hand, we may decide to use large block
sizes; however, the compromise is equally difficult
to be met. The only good alternative is to use blocks
with sizes specified by random sequences.
Blocking compensates for situations where known
factors (like sex or age) other than the status of a
treatment group are likely to affect the studied
association. Using this analytical approach we
control for the fact that studied patients/subjects
(our experimental units) are not homogeneous
with regard to some factors (other than the status
of treatment group), which are likely to affect the
outcome of our study. Accordingly, our task is to
(a) collect together homogeneous elements studied
in our experiment (e.g. patients, laboratory
animals) into a block, and then to (b) assign
treatments at random within a block.

Example: we study the in vitro effect of different
antiplatelet drugs on blood platelet reactivity
evaluated with whole blood impedance
aggregometry with collagen as an agonist; our
outcome is the observed platelet aggregation of
whole blood samples; blocks are individuals, who
donated a blood sample; treatments are different
antiplatelet drugs, by which portions of each of the
blood samples are processed.

3. Randomizing the pairs of control and intervention
enables a random allocation into the groups of
intervention (with treatment) and control subjects
(no treatment); used in crossover-designed studies,
in which participants experience both intervention
and control treatment at some stage during the
study; the randomization in pairs allows to plan the
order of treatment. The possibility of some carry-
over effect(s) of intervention on control treatment
may result in a bias in this type of study design.
Example: when randomizing intervention-control
pairs in the study of the effects of acetylsalicylic
acid therapy on serum salicylate levels in 10
hypercholesterolemic patients, we can use the
following design:

How to plan an experiment —I. Randomization

1 intervention — control
2 control — intervention
3 intervention — control
4 intervention — control
5 control — intervention
6 control — intervention
7 intervention — control
8 control — intervention
9 intervention — control
10 control — intervention

4. Uniform random sampling of time periods or
distances; generator can be found at:
http://www.wecrl.ars.usda.gov/cec/java/time.htm.
Example: we are to measure the flow rate of blood
in a viscosimeter; we may do that by counting
drops of blood collected in a beaker; for our
convenience we choose to perform 5 repeats of
counting, each lasting for 5 sec at the most, and
we need resting breaks between each episode of
careful observation (with counting!) lasting for
minimum 10 sec; finally we can devote no more
than 5 min for the game. Our possible approach
may be:
1:25-1:30 hr
2:28-2:33 hr
2:52-2:57 hr
3:25-3:30 hr
4:16-4:21 hr
It shows we are supposed to waste at least 3 min

for loaf-about; all we need is 100 sec.
Minimization
When analyzing small groups minimization

procedure is the only acceptable alternative to classical
random sampling. Minimization is claimed to be
superior over typical randomization under such
conditions, and approaches using minimization are
considered methodologically equivalent to randomi-
zed studies. Its particular advantage is that minimiza-
tion ensures balance between intervention groups for
several factors included in basic characteristics of
participants under a study. It enables the researcher
to make small groups closely similar with respect to
some initially chosen parameters essentially at all
stages of the study. Using this strategy the choice of
the first participant is truly random, while for each
subsequent element the allocation of treatment is
identified in such a way that it minimizes the imba-
lance occurring between the examined groups [1, 2].

How to (properly) use the tool
of randomization? — a brief summary

We have to remember that a correct design of
randomization is only one element of our research.
We fully benefit from that provided other demands
—including conceptual and methodological approach
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— are worked out. Before we start with our stu-
dy/experiment we need first to write down a protocol
describing what we are supposed to do in our
experiment. When preparing a protocol we need to
answer at least the following questions [2, 3]:

* What is the purpose/idea of the experiment?

The answer should not be something vague, like:
”to investigate new disease” or "to characterize
patients with type 2 diabetes mellitus given some
oral glycaemic agent” or "to find out about the effects
of ACE inhibitor on an organism”, because even in a
perfectly worthwhile experiment a statistician would
be unable to help with data analysis. It is much better
to state a specific question that can be answered
either in a dichotomic (yes/no) or quantitative
manner, for example:

—to test the hypothesis that there is no difference
between two different doses of thienopyridines
in cardiovascular patients;

—to estimate how much more efficient is
simvastatin than atorvastatin in reducing LDL
cholesterol;

—to elaborate a regression model describing the
kinetics of ASA enzymatic hydrolysis in blood
plasma in the presence of salicylates.

What are the treatments supposed to be tested?
The treatment is what we are doing with the
studied objects and how we influence the elements
from the population under study (the so called
experimental units, e.g. subjects, patients, animals,
etc.). We need to give a precise description of the
treatments intended to apply to the experimental
units (e.g. 4 mg ASA per kg body weight, given
peritoneally, every day). The description should
contain complete technical details, and preferably
include a code like A, M, P for reference later. In
some experimental units (randomly allocated to
different groups) treatments are simple, in others
they are combinations, for example 4 or 40 mg ASA
kg b.w. alone or in a combination with 5 mg
Pycnogenol/kg b.w. give 4 combinations in total, if
they are to be dosed twice a day, there are 8
different treatments. If all doses/combinations are
administered at a morning, between 8.00 and 9.00,
then the information about the time of dosing
should be given in description of methods rather
than here. Likewise, if the purpose of the
experiment is to find the best time (morning or
evening) to administer the drug at one selected
dose, then the treatments are just times of
administration and all details about the drug and
its dose should be stated in “Methods”. When we
plan to use different drug doses we need to answer
the question whether we want to compare the
doses with each other or whether we want to
compare both doses with the effect of doing
nothing. In the latter case there is a third treatment,
“do nothing”, which is commonly called a control.

We should always decide whether “control” is really
“amust”, whether it is really needed. Or maybe “the
necessary control” is rather our orthodoxic thinking
of science? Be aware that in some experiments
including the control group can be harmful; when
it is already known that a given therapy is effective
in ameliorating complications of a disease, then it
would be unethical to run an experiment comparing
a new tested therapy to a pure control (doing
nothing). In such cases it would be much more
reasonable to create a reference group (currently
used therapy) instead of pure control. In medical
practice, when experiments are performed on
people, the statement “do nothing” should be
replaced by a term “placebo”, so that everyone
involved thinks that something is being done
(blinding).

What are the methods to be used?

There should be given technical details sufficient
enough to enable other scientists to replicate our
work. The description should include information
on exactly how we apply the examined treatments
to the chosen experimental units and what is to
be done from then on until we collect all
measurements.

What are the experimental units?

Experimental units are the elements of our
examined population, which serve us to evaluate
effects of the treatments. They need to be
described in sufficient detail. For example, if there
are 12 male Wistar rats sacrificed in the course of
a 3-day experiment, then we have 12 experimental
units. Otherwise, when we have 15 adult donors,
and each of them is donating blood every day for
4 days, then we deal with 60 experimental units if
we are able to change treatments every day. When
choosing the experimental units we should keep
in mind that it is not so important that they are as
alike as possible, but it is extremely important that
they are representative. The characteristics of the
experimental units should be like a ‘mirror image’
of the characteristics of a general population the
elements come from. We should realize that with
experimental units unalike we risk that any within-
group variation may conceal any differences
between the treatments that we are trying to find,
especially if our sample size is small. However, if
they are not representative, we are not able to
extrapolate any conclusions of our study.

What are the observational units?

The observational units are the objects on which we
take measurements. In many situations they are the
same as the experimental units. To specify what are
the observational units we first need to declare
which parameter(s) we are interested in measuring.
If we have 15 streptozotocin-diabetic rats, given daily
N-methylnicotinic acid in one dose for 8 weeks, and
each animal is bleed once at the termination of an
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experiment, then the observational units are the 15
rats. Otherwise, if each animal is bleed once a week,
then the observational units are 120 rat-weeks. In
our data sheet one row usually represents one
observational unit.

What measurements are to be recorded?

In our protocol it is necessary to write down
everything to be recorded, for example:

—body mass in grams every 7 days, in the
morning, after 12-hour fasting;

—blood glucose in mg/100 ml after 12-hour
fasting;

—expression of platelet surface membrane
P-selectin in samples of blood anticoagulated
with 3.2% citrate from each of CAD patients
from each group (each blood sample will be
observational unit).

What is the proposed design of our study?

The design of the study contains the description
of experiment (e.g. 29 patients receive ASA, 34
patients receive Clopidogrel); in more complex
designs we need to mention the use of blocks,
Latin squares or Greek-Latin squares. Remember
that in research we rely on inductive reasoning
that moves from specific observations to broader
generalizations and theories. The tool of induction
is in fact “a trade mark” of science and research,
and it may be so because it relies on numbers.
The more replications our observations are based
on, the stronger is our belief in a given
generalization; we say that the lower is the risk
that we may be wrong when stating a certain
conclusion. We need, however, to justify the
amount of replication undertaken in our study. If
there is too much replication then we may waste
time and money on our experiment. If our study
involves laboratory animals that are to be
sacrificed, it may be unethical to use too many.
Otherwise, if there is too little replication, we risk
that any real differences between treatments may
be masked by the differences among the
experimental units (within-group variability
masks inter-group variability), so we may be
unable to give any conclusions, and we are
stretched to waste available resources (patients,
animals; problem of ethics). To reasonably
compromise we need to rely on one of the best
research tools ever invented: the a priori
estimation of a sample size.

What is our plan of the study?

In a simpler approach, in an experiment with no
blocks, we normally employ what is called a
“complete randomization”. For example, to
randomly select subjects/patients, whose names
begin with letters B, C, D, F, J, K, P, R and S, to
compare the treatments A and Z, we simply choose
a random permutation (either by shuffling cards,
tossing balls/envelopes, or from a computer) and
apply it to the plan of our experiment. First we

How to plan an experiment —I. Randomization

systematically number our experimental units
(patients)

1 2 3 4 5 6 7 8 9
c D F J K P R S

Then we overlay our (generated) random
sequence of numbers 1through 9,f.i.1,5,6,7,9, 2,
8, 3, 4, to the systematic sequence of patients:

1 5 6 7 9 2 8 3 4
B J K P S C R D F
1 2 3 4 5 6 7 8 9
A A A A VA Z VA Z VA

How do we propose to perform a statistical analysis?
It is of crucial importance to consider the guidelines
for the statistical analysis of data that we are
supposed to collect. There are at least several
rationales explaining why it is worthy to do it a priori
(including those referring to the adjustment of
experimental design according to how the collected
data may be analyzed, e.g. ANOVA or regression
models), before we collect the data. Simply, it is said:
“if you cannot think how to analyze the data before
their collection, do not waste your time and effort to
collect it.” Of course, you may often end up
accommodating or broadening your idea of statistical
analysis, e.g. using post hoc multiple comparison tests
as a consequence of the rejection of null hypothesis
with ANOVA. In general, however, matching between
what we planned and what we finally performed with
respect to data analysis well testifies to how
adequately we planned a whole experiment.

Concluding remark — a single one

Randomization is more than a fad... and less than
a revolution (in our thinking of experimentation).
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