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The study of cytoskeleton arrangement and its contribution to survival of cell-to-
cell contacts appears to be essential for understanding of numerous cellular and 
tissue processes. Applying CK15, S100 labeling and TUNEL reaction to cutane-
ous lichen planus subtypes, we found CK15 expression in the outer and inner root 
sheath of hair follicles, the basal epidermal layer, and eccrine glands. Its follicular 
expression was decreased in nearby inflammatory infiltrates. The CK15 immu-
nopositivity was mostly described as weak (92.3%) for lichen planus but equally 
subdivided into weak, moderate and strong in lichen planopilaris (χ2 = 32.514;  
df = 4; p < 0.001). The greatly varying apoptotic index was the highest in the li-
chen planopilaris involving the scalp: 81.2 ±10.7; 87.8 ±10.7 and 88.0 ±10.5 for 
the basal, spinous and upper epidermal layers, respectively. S100 positive epidermal 
and follicular cells did not differ in the lesions demonstrated in the study groups; still 
immunoreactivity was more pronounced in the scalp region of lichen planopilaris. 
Damage of cell-to-cell contacts was confirmed by electron microscopy. Apart from 
immunocyte-mediated keratinocyte death, cytoskeleton-based injury and loss of cell-
to-cell and matrix contacts may be of great importance, leading to eradication of 
degrading cells and thus contributing to the pathogenesis of lichen planus.

Key words: CK15, loss of cell-to-cell contacts, apoptosis, lichen planus, scarring 
alopecia.
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Introduction

Lichen planus (LP) is a benign inflammatory mu-
cocutaneous disease often presenting as chronic [1]. 
Cutaneous LP has different clinical subtypes based on 
the site of involvement and morphology of the le-
sions. They include papular LP, hypertrophic, vesicu-
lobullous, actinic, annular, atrophic, linear, follicular 
(lichen planopilaris – LPP), LP pigmentosus and LP 
pigmentosus-inversus forms [2, 3]. Lichen planus  
is a  common dermatosis characterized by pruritic, 
planar, purple, polygonal papules [4]. Three differ-

ent types of LPP are recognized: classic LPP, Las-
sueur-Graham-Little-Piccardi syndrome, and fron-
tal fibrosing alopecia. It is a  disease of adults, and 
children are rarely affected [5]. The classic form of 
LPP commonly involves the vertex, but any region of 
the scalp can be affected. Lesions also may be present 
on eyebrows and on the distal parts of the body, for 
example, legs and pubic region [6]. Common pre-
senting symptoms include shedding, hair loss, and 
pruritus. The early scalp LPP lesions are character-
ized by follicular violaceous erythema and acuminate 
keratotic plugs which are used as diagnostic criteria. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=24672362
https://www.ncbi.nlm.nih.gov/pubmed/?term=22908728
https://www.ncbi.nlm.nih.gov/pubmed/?term=24891656
https://www.ncbi.nlm.nih.gov/pubmed/?term=15965418
https://www.ncbi.nlm.nih.gov/pubmed/?term=17467854
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The lesions are commonly located at the periphery 
of the bald zone, appearing to be patchy or diffuse 
[7, 8]. Various triggers have been proposed as poten-
tial – infections, drug reactions, reactions to metal 
[9, 10], vaccinations [11] and stress [12, 13]. The 
role of genetic factors in the pathogenesis of primary 
cicatricial alopecias (PCA) including those related to 
autoimmune matter has been studied as well [7, 14].

Hair follicle cyclic lifelong remodeling activity 
proves the presence of its own stem cells [15]. These 
multipotent stem cells, called epithelial hair follicle 
stem cells (eHFSCs), are located in the bulge region 
– specifically, at the insertion site of the arrector pili 
muscle in the outermost layer of the outer root sheath 
[14, 15] – and contribute to repopulation of the epi-
dermis after injury. According to the results published 
by Abbas et al. (2009, 2011), Kloepper et al. (2008), 
and Sabeti et al. (2013) [16, 17, 18, 19] cytokeratin 
15 (CK15), a stem cell marker, labels the cells in the 
bulge region of the human hair follicle, the outer-
most layer of the outer root sheath, the basal layer of 
the epidermis and eccrine glands, whereas other re-
searchers found that the basal layer of normal epider-
mis is usually negative for CK15, and the bulge stem 
cells do not contribute to the interfollicular epidermis 
reconstitution [20]. A further controversy is added by 
Cotsarelis’ publication reporting about the migration 
of the bulge cells to the interfollicular epidermis [21]. 
Moreover, an inflammatory cellular infiltrate, located 
in the bulge region and distal follicle, may become 
a strong contributor to deficiency of hair follicle stem 
cells in LPP, explaining the permanent loss of hair 
(cicatricial alopecia) occurring in LPP [22]. Mobini et 
al. suggested that damage of eHFSCs evidenced by 
diminished or absent immunostaining of CK15 and 
mediated by cytotoxic CD8 positive cells plays a role 
in the pathogenesis of LPP [23]. However, the evi-
dence that loss of eHFSCs really does occur in human 
PCA is poor [24, 25, 26]. Recent findings suggest 
that the loss of CK15-positive cells occurs in the hair 
follicles surrounded by perifollicular lymphocytes, 
while uninvolved follicles usually retain expression of 
CK15 [27].

The apoptotic process mediated by CD8 positive 
cytotoxic T lymphocytes and natural killers follows 
either the perforin/granzyme pathway or Fas/Fas li-
gand pathway, when cytotoxic proteins are launched 
to perform disseminated keratinocyte death [28, 29, 
30, 31, 32, 33, 34]. However, cell death may also 
be induced by other mechanisms than those initiated 
by T cells, such as loss of cell-to-cell or cell-to-ma-
trix contacts [34, 35]. Nonspecific responses related 
to these mechanisms are indicated by damage of the 
basement membrane, which underlies and supports 
keratinocytes, action of metalloproteinases, etc. [7]. 
By light microscopy the apoptotic keratinocytes are 
evidenced as eosinophilic ovoid bodies found in the 

epidermis and subepidermal papillary regions in LP 
patients [36]. Colloid bodies (CB), also known as 
Civatte bodies, hyaline or cytoid bodies, reflecting 
apoptosis of keratinocytes and attenuating chang-
es of intermediate filaments, were described several 
decades ago by researchers conducting electron mi-
croscopy investigations and TUNEL reaction analysis 
[37, 38, 39, 40, 41, 42]. However, little is known 
about the details of cell death when various clinical 
forms of LP are compared. 

S100 proteins comprise a family of more than 25 
different regulatory proteins, characterized by tis-
sue-specific expression [43, 44]. Acting as paracrine 
and autocrine mediators, these have been shown to 
be involved in numerous intracellular and extracellu-
lar functions, such as regulation of cell proliferation 
and survival or, alternatively, apoptosis, chemotaxis, 
inflammation, immune responses, Ca2+ homeostasis, 
differentiation of keratinocytes and dynamics of cy-
toskeleton constituents [45, 46, 47]. S100 proteins 
are expressed in normal and diseased skin [48, 49], 
and the subcellular distribution of these proteins in 
keratinocytes is heterogeneous [50, 51]. 

S100-positive dendritic cells (DCs), involved in 
antigen presentation, phagocytosis, healing and re-
pair processes, have been demonstrated to be signifi-
cantly increased in LP [52]. Moreover, genetic studies 
conducted by Wenzel et al. demonstrated that genes 
which encode some S100 proteins as well as keratins 
CK5, CK15, and CK17 are differently expressed 
in LP lesions, in comparison with skin biopsies of 
healthy individuals [53].

To gain a  deeper understanding of the patho-
genesis of LP and development of scarring alopecia, 
when different clinical forms appear under the scope, 
we selected CK15 and S100 immunohistochemis-
try, TUNEL reaction and electron microscopy. This 
choice gives information on the ongoing apoptot-
ic process involving rearrangement of keratinocyte 
cytoskeleton. Our goal was to explore a  pathway 
of eradication of damaged keratinocytes in patients 
with classic LPP and LP via assessment of apoptotic 
indices and ultrastructural evidence of keratinocyte 
death, paying special attention to cytoskeleton and 
loss of cell-to-cell contacts, correlating these findings 
with an evaluation of the epidermal and follicular ex-
pression of the stem cell marker CK15 and clarifying 
the role of the cutaneous cells specializing in immune 
surveillance under exposure to LP conditions.

Material and methods

Study design

This was a retro- and prospective study of patients’ 
medical records, biopsy descriptions, and ongoing 
and archived punch biopsies. Thirty-five patients (16 
men and 19 women) were included in this study. The 
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age range was 23-77 years (mean age = 46). From 
them, 8 patients were retrospectively diagnosed as 
having classic LPP of the scalp, 7 patients had LPP of 
the corpus and 12 LP, whereas 8 had psoriasis vulgar-
is and served as positive controls. All patients were 
admitted and treated at the Riga 1st Hospital Clinical 
Centre for Skin and Sexually Transmitted Diseases, 
Riga, Latvia. The search criteria were: (1) “follicu-
lar LP” or “classic LPP” localized in a) the corpus or 
b) the scalp, and “papular LP”; (2) “off ” treatment 
before the biopsy. Positive controls were collected 
during remission follow-up. The diagnosis of LPP, LP 
and psoriasis by both pathology report and clinical 
findings was necessary to be included in this study. 
The investigation was approved by the Riga Stradins 
University Ethics Committee. 

Light microscopy and immunohistochemistry

Histological sections (4-5 µm) were cut from for-
malin-fixed, paraffin-embedded punch biopsy tissues 
and mounted on HistoBond+ slides (Marienfeld, 
Lauda-Königshofen, Germany). Consecutive sections 
were used as negative controls of the immunohisto-
chemical reactions, and for hematoxylin and eosin 
(HE) staining to confirm the diagnosis. Evaluation of 
structural changes was done following Olsen’s guide-
lines (2003) and recommendations of Tandor et al. For 
immunochemistry, paraffin sections were dewaxed in 
xylene, hydrated in a series of graded ethanols, and 
transferred to a  methanol/0.3% hydrogen peroxide 
solution (30 min). After quenching of endogenous 
peroxidase activity, sections were washed three times 
in double distilled water. Heat-induced antigen re-
trieval was accomplished with the sections placed in 
10 mM citrate buffer for 15 minutes in a vapor lock. 
After antigen retrieval, specimens were allowed to 
cool. Thereafter, sections were successively incubated 
for 12 hours (2-6°C) with the primary antibodies, as 
recommended by the manufacturer – mouse mono-
clonal anti-CK15 antibody (EMD Millipore Corpora-
tion, Temecula, CA, USA, 1 : 80, clone LHK15) and 
mouse monoclonal anti-S100 antibody (Cell Marque, 
Rocklin, CA, USA, 1 : 100, clone 4C4.9) according-
ly. After rinsing in PBS solution, sections were in-
cubated with HiDef Detection Amplifier for 10 min 
at room temperature (RT). After consecutive rins-
ing, incubation with HiDef Detection HRP Polymer 
Detector for 10 min (RT) was applied. The antigen 
sites were then visualized with 3,3′-diaminobenzidine 
tetrahydrochloride (DAB+Chromogen and DAB+-
Substrate buffer, Cell Marque, Rocklin, CA, USA) 
for 10  min. The sections were counterstained with 
Mayer’s hematoxylin, washed with tap water, dehy-
drated, cleared and mounted in PERTEX (mounting 
medium for light microscopy, Histolab, Gothenburg, 
Sweden). Initially, reproduction of published immu-
noreactivity patterns for CK15 was used as an inter-

nal positive control as recommended by Kloepper et 
al. (2008). Thereafter, sections from a case of mela-
noma and human squamous cervical carcinoma were 
used as positive controls for S100 and CK15 immu-
nohistochemistry, respectively. Immunohistochemi-
cal controls, with omission of the primary antibod-
ies or substitution of them with TRIS solution, were 
used as negative controls.

Sections were photographed by a  Leitz DMRB 
bright-field microscope using a  DFC 450C digital 
camera and a  Glissando Slide Scanner (Objective 
Imaging Ltd., Cambridge, UK) 0.5 μm/pixel resolu-
tion with 20× objective, 0.275 μm/pixel resolution 
with 40× objective. Therefore, additional reproduc-
ible measurements (Aperio ImageScope program 
v12.2.2.5015) of tissue markers along with their spa-
tial distribution were obtained.

TUNEL reaction 

For detection of endonucleolytic cleavage of chro-
matin, characteristic of apoptosis, the terminal de-
oxynucleotidyl transferase-mediated deoxyuridine 
triphosphate nick end-labeling (TUNEL) method 
was applied, using the In Situ Cell Death Detection 
Kit, POD kit and including Enzyme solution, Label 
solution and Converter-POD (Roche, Mannheim, 
Germany). 

Histological slides for quantitation of TUNEL-pos-
itive cells were deparaffinized and hydrated. Pretreat-
ment included microwave application with slides 
placed in 0.01 M citrate buffer (5 min, 360 W). Sec-
tions were kept in 1% BSA for 1 h (RT) and after-
wards incubated at 37°C with TUNEL mix (TUNEL 
Enzyme solution: TUNEL label, dilution 1 : 9) for 1 h 
in a humid chamber. After washing with TRIS buffer, 
sections were treated for 10 min with methanol/0.3% 
hydrogen peroxide solution. Thereafter, sections were 
incubated with Converter-POD solution for 30 min 
(37°C), rinsed, incubated with DAB (Cell Marque, 
Rocklin, CA, USA), counterstained with Mayer’s he-
matoxylin and routinely coverslipped.

Evaluation of immunohistochemical staining

The assessment of immunostaining was performed 
by two independent observers blind to the clinical 
and pathological data. Cells that were labeled by the 
anti-CK15 antibody and TUNEL kit and displayed 
brown reaction products were considered immuno- 
positive.

Evaluation of CK15 expression: Levels of immu-
nopositivity were defined semiquantitatively and 
graded as negative (–), weak (+), moderate (++) or 
strong (+++) when follicular and epidermal cells 
within the visual microscopic field were positive at 
0-10%, 11-50%, or > 50%, respectively. 



261

CK15, apoptosis and S100 protein expression in cutaneous lichen planus

Quantitation of S100 positive cells: The staining reac-
tion was estimated, and S100 positive cells were de-
termined within the visual microscopic fields related 
to the epidermis (magnification 400×). 

Evaluation of apoptosis marker expression: We deter-
mined the total number of apoptotic epithelial cells 
(TNAEC) within the visual microscopic field and 
compared these data with the total number of epi-
thelial cells (TNEC) appearing within the same field. 
The apoptotic index (AI) was used as a comparative 
figure (AI = TNAEC/TNEC ×100), as described 
previously [54]. AI was estimated for the basal, spi-
nous, and overlying epidermal layers, as well as follic-
ular localization separately. 

Statistical analysis

The quantitative data were expressed as means ± 
standard deviation (SD) and as medians with inter-
quartile range (IQR), whereas categorical parameters 
were expressed as frequencies and percentages, after 
being submitted to a  Kolmogorov-Smirnov test to 
detect any differences between samples. Dispersion 
analysis (ANOVA) was performed using a post hoc 
test with Bonferroni correction. Values of p < 0.05 
were considered as significant. SPSS version 21.0 was 
used for statistical analysis.

Electron microscopy

Punch tissue samples obtained from LP patients 
with the aim of study for characterization of kera-
tinocytes’ apoptosis and cytoskeleton changes were 
processed for conventional transmission electron 
microscopy. Materials were fixed in 2.5% glutaral-
dehyde in 0.1 M phosphate buffer at pH 7.4, post-
fixed in 1% OsO4, dehydrated in a series of graded 
ethanols and acetone, and embedded in epoxy resin. 
Ultrathin, 60-nm-thick fine sections were cut with 
an LKB ultramicrotome, collected on copper grids, 
double stained with uranyl acetate and lead citrate, 
and examined in a JEOL 1011 transmission electron 
microscope (JEOL, Japan) at accelerating voltage 80-
100 kV and at magnification 4000-30 000×.

Results

Clinical findings

From the medical records, data including age, gen-
der, duration, site and extent of disease, signs and symp-
toms, and presence or absence of itching, were obtained. 
Common findings in the scalp included follicular hyper-
keratosis, pruritus, areas without hair, and perifollicular 
erythema, whereas the majority of corpus LPP patients 
had pink to violaceous, shiny, pruritic polygonal pap-
ules and plaques, and follicular hyperkeratosis. Lichen 
planus was characterized by flat-topped, pink to vio-
laceous, shiny, pruritic polygonal papules and plaques. 

Histologic findings

The early lesions demonstrated in LPP manifest-
ed as dilated hair follicles containing keratotic plugs 
with underlying hypergranulosis. Lymphocytic peri-
follicular and perivascular inflammation was present. 
Epidermal and dermal histopathology in the case of 
LPP confirmed cellular degeneration and vacuoliza-
tion in the basal epidermal layer, acuminate keratot-
ic plugs, and lymphocytic band-like inflammation, 
whereas LP presented with focal hypergranulosis, 
basal cell layer degeneration and a band-like subep-
idermal infiltration (Table I). Eosinophilic epidermal 
and upper dermal CBs were seen.

Immunohistochemistry findings

CK15 immunostaining

Cells labeled by the anti-CK15 antibody displayed 
a brown cytoplasmic staining pattern. Expression of 
CK15 in epithelial cells was demonstrated in the out-
er and inner root sheath of hair follicles, the basal 
layer of epidermis and eccrine glands. The results de-
scribing levels of epidermal and follicular cytokeratin 
expression and found to be greatly varying from ab-
sence and weak to strong are summarized in Fig. 1.

Comparing the levels of CK15 expression in two 
subtypes of LPP and LP, when localization, namely, 
epidermal or follicular, was not taken into consider-
ation (Fig. 2), we found that LP and psoriasis mostly 
(92.3 and 87.2%, respectively) presented with weak 
CK15 immunopositivity, whereas both LPP types re-
vealed almost equal splitting into the levels of weak, 
moderate and strong immunopositivity (χ2 = 32.514; 
df = 4; p < 0.001). Both LP forms displayed follicu-
lar CK15 immunopositivity in the hair follicle bulge 
region, specifically, the outermost layer of the outer 
root sheath, which usually was strong, and strong to 
moderate in the inner root sheath. Moreover, CK15 
positive follicular cells revealed a remarkable dimin-
ishment when lymphocytic infiltration happened to 
be localized in the close vicinity (Fig. 3). Epidermal 
expression of CK15 was almost nil in the case of LP, 
whereas its positive decoration of the cytoplasm of 
some particular keratinocytes of the basal epidermal 
layer was demonstrated in LPP. Psoriatic skin sam-
ples demonstrated some discontinuous expression of 
CK15 in keratinocytes constituting the basal layer of 
epidermis mostly estimated as weak. 

TUNEL reaction results 

Study groups revealed greatly varying TUNEL re-
action results summarized in Fig. 4. 

The AI value was lower in the LP group than in the 
LPP group, revealing an increase in index values from 
the basal toward the upper epidermal layer (Fig. 5, 6). 
The highest estimates were demonstrated for the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=18949287
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scalp region of LPP; these were expressed as follows 
– 81.2 ±10.7; 87.8 ±10.7 and 88.0 ±10.5 for the 
basal, spinous and upper epithelial layers, respectively. 
AI dispersion analysis (ANOVA) showed statistically 
significant differences between patient groups within 
the basal (F = 108.7; p < 0.001), spinous (F = 29.6; 
p < 0.001), and upper (F = 10.7; p < 0.001) epi-
dermal layers. In the basal epidermal layer the mean 

difference was 18.49 (95% CI: 10.60-26.39), 35.91 
(95% CI: 27.36-44.46), 54.41 (95% CI: 46.62-
62.20), 26.57 (95% CI: 17.56-35.57) and 27.84 
57 (95% CI: 18.19-37.48) when LPP of corpus and 
scalp, LPP of corpus and LP, LPP of scalp and LP, LPP 
of scalp and psoriasis, and LP and psoriasis were com-
pared, respectively, whereas in the spinous layer and 
upper epithelial layers these variables were observed 
as 21.67 (95% CI: 12.05-31.29), 8.78 (95% CI: from 
–1.37 to 18.93) and 30.45 (95% CI: 21.05-39.86), 
and 13.02 (95% CI: 2.91-23.13), 5.42 (95% CI: 
from –5.24 to 16.09), 18.44 (95% CI: 8.56-28.32), 
29.44 (95% CI: 18.21-40.67) and 22.11 (95% CI: 
9.7-34.47), respectively. It is worth noting that apart 
from the damaged apoptotic keratinocytes, TUNEL 
positivity was demonstrated within dermal inflamma-
tory infiltrates and intraepithelial lymphocytes, which 
were not specifically counted in this study.

Table I. Histologic features of LPP and LP 

Findings Number of cases

LPP LP 

scalp corpus

Epidermal involvement:

Lichenoid reaction 3 3 10

Vacuolar cellular changes 6 6 12

Spongiosis 0 0 8

Hypergranulosis 0 1 7

Hyperplasia 0 0 2

Absence of epidermal 
involvement

1 1 0

Follicular involvement:

Lichenoid reaction 4 4 3

Vacuolar cellular changes 7 5 4

Spongiosis 3 0 1

Tufted follicles 2 3 0

Cysts 2 3 0

Absence of follicular 
involvement

0 0 0

Keratinization pattern:

Parakeratosis 1 0 3

Hyperkeratosis 2 1 5

Follicular plugging 6 7 4

Inflammation:

Mild 3 1 2

Moderate 2 2 8

Severe 2 3 2

Absent 1 1 0

Localization of infiltrate:

Dermal 2 4 12

Follicular 6 4 0

Interfollicular 0 0 0

Localization of fibrotic 
changes:

Upper dermis 4 3 2

Lower dermis 3 7 0

Perifollicular 5 4 0

Fig. 2. Diagram complementary to Fig. 1 and summariz-
ing distribution of CK15 expression levels in study groups
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S100 immunostaining

Strong S100 cytoplasmic and, sometimes, nuclear 
staining was observed in the samples obtained from 
all patient groups. It was confined to cells localized 
in the spinous epidermal layer, slightly more scarcely 
to the suprabasal and basal layer of the epidermis. 
Hair follicles displayed S100 positivity confined to 
the outer root sheath (Fig. 7). The eccrine glands, 
the apocrine glands, and the sebaceous glands were 
all negatively stained with the anti-S100 antibody. 
The majority of S100-positive dermal cells present-
ed perivascular localization. Microscopically, the le-
sions from the scalp region of LPP patients demon-
strated stronger and denser immunoreactivity when 
compared to the corpus region. Still, there were no 
differences found in S100 positive cells in the epider-

Fig. 3. Immunostaining for CK15 of a cutaneous LP form. 
The outermost layer of the outer root sheath is heavily dec-
orated with the anti-CK15 antibody in the case of LPP of 
the corpus, but appears to be diminished close to the in-
flammatory infiltrate. Original magnification 250× 

Fig. 4. Assessment of AI in the LP, LPP of the scalp, corpus 
region and psoriasis

Fig. 5. TUNEL positive cells moderately decorate epider-
mis in LP, some inflammatory dermal cells display positiv-
ity as well. Original magnification 200× Fig. 6. Numerous TUNEL positive cells’ nuclei visible 

in the LPP lesions affecting scalp. Original magnification 
200× 

Fig. 7. S100 immunostaining in LP. Numerous S100 pos-
itive dendritic cells present in the outer root sheath and 
epidermis in scalp region. Original magnification 100× 
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mis and hair follicles calculated for samples obtained 
from LP and LPP patient groups, and evaluations 
of S100 immunostaining were described as follows: 
LPP of the corpus 9.0 (IQR 6; 11.0), scalp region 
4.0 (IQR 2.3; 18.8), and LP 10.5 (IQR 6.0; 14.3), 
whereas epidermal S100 immunostaining done on 
psoriatic samples was virtually nil, described as 0.0 
(IQR 0.0; 1.0), and differed significantly (p < 0.001) 
when compared to aforementioned study groups.

Electron microscopy

Transmission electron microscopy aimed to achieve 
better understanding of LP pathogenesis via explora-
tion of cellular damage and alteration of cell-to-cell 
or cell-to-matrix contacts accentuating the role of the 
keratinocyte cytoskeleton in the conditions studied. 
The lesions of 8 patients with LP were considered 
and processed for ultrastructural analysis based on 
immunohistochemistry findings and a punch biopsy 
size restriction. Keratinocytes of the basal layer of-
ten demonstrated detachment from the basement 
membrane and greatly varying degenerative chang-
es. The tonofibrillar system appearing in the affect-
ed keratinocytes demonstrated a  wide spectrum of 
changes – from thick and densely packed bundles of 
intermediate filaments attached locally to the desmo-
somal plaque (Fig. 8) and the occasional widening of 
the intercellular spaces up to chaotically distributed 

Fig. 8. Bundles of intermediate filaments attached at the 
cytoplasmic site to the desmosomal plaques, local widening 
of intercellular spaces. Original magnification 12 000×

Fig. 9, 10. Severe disturbance of cell-to-cell contacts and disorganization of the keratinocytes’ tonofibrillar system, ap-
pearance of free desmosomal complexes in the expanded intercellular space. Original magnification 500× and 12 000×
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and thinned bundles of intermediate filaments, and 
even free desmosomal complexes (Fig. 9, 10) in the 
expanded intercellular spaces separating damaged 
keratinocytes with low cytoplasmic electron density. 
Rounded, oval and irregularly shaped accumulations 
of tonofilaments with sparse cytoplasmic organelles, 
which were assumed to be CB, were demonstrated 
in or between the degenerating keratinocytes sepa-
rated from the underlying basement membrane or 
in the upper dermis (Fig. 11). The altered basement 
membrane demonstrated a  discontinuity with local 
ruptures or, conversely, multiplications. Sometimes, 
remnants of the basement membrane were demon-
strated freely in the dermis, being surrounded by col-
lagen fiber microfibrils. 

Discussion

Lichen planus affected individuals enrolled in this 
study were found to be in accordance with the liter-
ature data regarding their age and a  female gender 
predominance [1]. Patients affected by classic LPP of 
the corpus and LP presented with polygonal pruritic 
papules, whereas in the case of classic LPP of the scalp 
they presented with perifollicular erythema, follicular 
hyperkeratosis, and permanent hair loss. Apart from 
distribution of clinical subtypes based on the site of 
involvement, classic LPP of the corpus and LP shared 
many common clinical characteristics at the time of 
presentation; therefore, punch biopsy was considered. 

Band-like lymphohistiocytic infiltrate at the der-
mal-epidermal junction and in the upper dermis, bas-
al cell degeneration, foci with wedge-shaped hyper-
granulosis, slight spongiosis in the spinous layer, and 
lichenoid reaction of the epidermis (a  jagged “saw-
tooth”) were demonstrated in most of the LP patients 
recruited in this study and reported by other authors 
[2, 55], whereas, similarly to Poblet et al. we found 
dilated hair follicles, infundibular hypergranulosis 
lymphocytic, perifollicular fibrosis and infiltration in 
the isthmus and infundibulum areas of the hair folli-
cles in the classic LPP [56]. According to the afore-
mentioned study, the basal layer of the hair follicle 
contained keratinocytes severely affected by inflam-
matory infiltrates in the case of classic LPP; more-
over, infiltrates heavily decorated the interfollicular 
epidermis. By contrast, the Mirmirani et al. study, 
based on evaluation of 20 cases of primary scarring 
alopecia, did not report any differences in the histo-
pathological profile between LPP, frontal fibrosing 
alopecia, pseudopelade (Brocq), and central centrif-
ugal alopecia, and suggested that characterization of 
hair follicles’ and sebaceous glands’ appearance, type, 
location, and extent of the inflammatory infiltrate 
may be of greatest value in guiding the treatment of 
patients with primary cicatricial alopecias [57]. Our 
findings suggest a milder involvement of the inter-

follicular epidermis, and this is in agreement with 
other researchers [2]. Permanent destruction of hair 
follicle, followed by its substitution by fibrous tissue, 
is reported to be common in primary cicatricial alo-
pecias [58]. We found moderate fibrosis at the sites 
of former follicles in the end stage of LPP by rou-
tine histopathology, revealing similarity of common 
destructive follicular changes and appearance of late 
fibrotic changes in the studied groups. 

CK15, used in a  number of studies, has been 
shown to be a nonspecific but still reliable marker of 
eHFSCs [19]. Interestingly, the comparison of both 
types of LPP done by us revealed a wide spectrum 
of levels defined for CK15 and described as weak, 
moderate and strong, whereas LP and psoriasis most-
ly presented with weak immunopositivity. Positive 
staining of CK15 was noted in all stages of the hair 
growth cycle, but CK15-positive follicular stem cells 
disappear in affected follicles when they enter the 
catagen phase, thus allowing the authors to outline 
the clinical relevance of the CK15 marker in LPP and 
explain the progression of the disease, despite the use 
of therapy [25, 27]. Recent studies showed CK15 
staining in the outermost layer of the hair bulge of 
normal human scalp samples, as well as in the prox-
imal isthmus, infundibulum, outermost layer of the 

Fig. 11. Degenerating keratinocytes showing chaotically 
oriented tonofilaments with sparse cytoplasmic organelles. 
Original magnification 12 000×

https://www.ncbi.nlm.nih.gov/pubmed/?term=24672362
https://www.ncbi.nlm.nih.gov/pubmed/?term=%3A+16650161
https://www.ncbi.nlm.nih.gov/pubmed/15793514
https://www.ncbi.nlm.nih.gov/pubmed/?term=24672362
https://www.ncbi.nlm.nih.gov/pubmed/?term=12522378
https://www.ncbi.nlm.nih.gov/pubmed/?term=18558994
https://www.ncbi.nlm.nih.gov/pubmed/?term=19175602
https://www.ncbi.nlm.nih.gov/pubmed/?term=25228111


266

Ilze Upeniece, Valerie Groma, Sandra Skuja, Vinita Cauce

sub-bulge, the basal interfollicular epidermis and ec-
crine glands [59, 60, 61]. Exploration of the literature 
data on development of scarring alopecia led us to 
the understanding that clones C8⁄144B and LHK15 
of anti-CK15 antibodies are mostly used [62], and 
LHK15 antibody, recognized as a marker for bulge 
epithelial stem cells in humans [63], was selected for 
this study. Other investigators have shown that bulge 
cells may serve as frame builders in the follicular con-
struction of a hair [64], and the opinion that loss of 
stem cells in the bulge area of the hair follicle is the 
reason for alopecia has been established [7, 22, 23]. 
CK15 has been shown to be an early predictor of ke-
ratinocyte differentiation, directing it to become ei-
ther epidermal or follicular [19]. Estimating develop-
ment of fibrosis, which is a common histopathologic 
finding in primary cicatricial alopecias, we found that 
CK15 negativity appears along with marked fibro-
sis. This statement is in agreement with previously 
reported data [25]. For all that, studying the rele-
vance of CK15, we have to confirm that a  sugges-
tion made by Kloepper et al. and Inoue et al. on the 
usefulness of application of a panel of eHFSC mark-
ers is justified [19, 60]. Heterogeneity of hair follicle 
progenitor cells reported by Hoang et al. still should 
be considered in such application [25]. Additionally, 
it is necessary to note that applying a digital immu-
nohistochemistry approach with the purpose to ob-
jectively detect and estimate tissue markers studied, 
as stated in the material and methods, we obtained 
results comparable with the manually obtained data. 
Similarly, no statistical difference between the vari-
ance of performance when comparing glass and dig-
ital interpretations was found by other researchers 
[65, 66]. Still, it seems that, when applying a digital 
approach, one should be careful to focus on specific 
pathology tasks to reduce sources of variability dilut-
ing findings [67], and prevent escalation of data size 
and complexity developing in well-designed databas-
es [68]. In our study, the CK15 antibody stained hair 
follicles, where it often remained negative in the in-
terfollicular epidermal region, and, especially, when 
localized next to inflammatory infiltrate. CK15 neg-
ativity was demonstrated in inflamed follicles, lead-
ing to the speculation that eHFSC loss happens due 
to inflammation [26]. Both resident and migratory 
lymphocytes abundantly colonize skin as an organ, 
but the question of whether and how immune cells 
impact skin epithelial stem cells still remains unclear. 
Recently published results on eHFSCs controlled by 
skin-resident macrophages and evidence that macro-
phage apoptotic death in early telogen causes activa-
tion of stem cells provide new insights on this issue 
[69]. Accepting that immune factors, in general, and 
cell-mediated immunity, in particular, play an essen-
tial role in the pathogenesis of the LP, we performed 
immunostaining for CD68 and CD8 phenotype and 

evaluated immunocytes surrounding the bulge area 
of the hair follicle (data not shown). We observed an 
increase of CD8+ cells along with elevation of in-
flammatory infiltration, confirming the contribution 
of CD8+ lymphocytes adjacent to the affected ke-
ratinocytes to the eradication of these cells. Based 
on a  speculative approach, a  suggestion regarding 
inflammatory or, possibly, autoimmune targeting of 
CK15 positive stem cells in LPP could be made. It 
is worth noting that in this context our results are 
in agreement with the hypothesis proposed by Har-
ries et al. reporting about LPP inflammation-induced 
eHFSC death. According to this proposal, a unique 
niche created for these cells in the hair follicle bulge is 
destroyed, and established immune privilege collaps-
es. Therefore, strong perifollicular lymphocyte-medi-
ated damage of keratinocytes, and even more pro-
nounced when accompanied by enzymatically guided 
remodeling and degradation of extracellular matrix 
occurring in LPP, suggests a role of the above-men-
tioned factor in the development of scarring alope-
cia. We propose that detection of CK15-positive cells 
along with evaluation of lymphocytic infiltrate im-
pact in the infundibulo-isthmic bulge portion of the 
hair follicle may be used as a prognostic tool in the 
case of cicatricial alopecia. Anti-S100 antibody rec-
ognizes epidermal melanocytes and Langerhans cells 
(LCs), as well as dermal histiocytes. LCs (Langerin+, 
CD1a+) constituting subsets of DCs populating epi-
dermis have been explored extensively along with 
interstitial DCs, namely, resident dermal myeloid 
DCs (CD11c+, CD1c+), plasmacytoid blood DCs 
(BDCA-2+, CD123+), and a  dermal population 
of CD14+ CD11c+ DCs found in normal skin, by 
other authors, who suggested that inflammatory skin 
diseases are characterized by a particular DC profile 
[70, 71]. Over time, the spectra of effects of LCs on 
peripheral T cells, activation of skin resident memo-
ry T lymphocytes, a defense function against patho-
gens and tissue repair were explored [72, 73]. In our 
study, immunohistochemical results of S100 staining 
observed in the case of classic LPP and LP, both in-
traepithelial LCs and dermal DCs, are consistent with 
the results of Santoro et al. [49]. However, signifi-
cant differences between the groups were not found 
by us, and this might indicate the similarity exist-
ing between clinical forms of LP. A  low number of 
epidermal S100 positive cells found in psoriatic skin 
possibly indictes the status reflecting the remission 
stage of the disease. 

Analysis of the literature data on the TUNEL eval-
uations suggests that a  higher number of apoptot-
ic keratinocytes was demonstrated in LP compared 
with healthy controls, but lower when LP is com-
pared with other inflammatory diseases (psoriasis 
and cutaneous lupus erythematosus) [74, 75, 76]. 
Our findings regarding psoriatic skin samples studied 
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are in accordance with the aforementioned literature 
data suggesting that psoriasis is characterized by ab-
errant differentiation and arrest of natural apoptotic 
process; to some extent, TUNEL positivity can be 
associated with hyperproliferation, in which actively 
replicating DNA is more abundant or accessible to 
detection.

Using the TUNEL assay and AI counting, we ob-
served an increased number of apoptotic keratino-
cytes in classic LPP compared with LP. TUNEL re-
action findings obtained by us are in accordance with 
evidence demonstrated by Bloor et al. and confirmed 
by Harries et al. reporting on increase of TUNEL pos-
itive epithelial cells in LP [14, 24, 40]. The results of 
TUNEL reaction supported by AI counting and ul-
trastructural analysis performed suggest that among 
patient groups analyzed in this study the basal and 
suprabasal keratinocyte damage was especially pro-
nounced in the LPP of the scalp region, thus with 
high probability explaining hair loss. Without deny-
ing the fact that keratinocyte death is mediated by 
cytotoxic factors released, we made attempts to reach 
a goal of the study accentuating the significance of 
occurring nonspecific responses via damage of the 
basement membrane supporting keratinocytes, cel-
lular cytoskeleton changes, and loss of intercellular 
junctions. 

In conclusion, our study specified eHFSC death 
in cutaneous LP evidenced by CK15 immunohisto-
chemistry and TUNEL reaction evaluations, and ac-
centuated the role of cytoskeleton-dependent injury 
manifested as loss of intercellular contacts in eradica-
tion of damaged keratinocytes.

Riga Stradins University Department of Doctoral stud-
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