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The complexity of histopathological images remains a challenging issue in cancer 
diagnosis. A pathologist analyses immunohistochemical images to detect a colour-�
based stain, which is brown for positive nuclei with different intensities and blue 
for negative nuclei. Several issues emerge during the eyeballing tissue slide analysis, 
such as colour variations caused by stain inhomogeneity, non-uniform illumination, 
irregular cell shapes, and overlapping cell nuclei. To overcome those problems, an 
automated computer-aided diagnosis system is proposed to segment and quantify 
digestive neuroendocrine tumours. 
We present a  novel pre-processing approach based on colour space assessment. 
A  criterion called pertinence degree is introduced to select the appropriate co-
lour channel, followed by contrast enhancement. Subsequently, the adaptive local 
threshold technique that uses the modified Laplacian filter is applied to minimize 
the implementation complexity, highlight edges, and emphasize intensity variation 
between cells across the slide. Finally, the improved watershed algorithm based on 
the concave vertex graph is applied for cell separation. 
The performance of the algorithms for nucleus segmentation is evaluated according 
to both the object-level and pixel-level criteria. Our approach increases segmen-
tation accuracy, with the F1-score equal to 0.986. There is significant agreement 
between the applied approach and the expert’s ground truth segmentation. 
The proposed method outperformed the state-of-the-art techniques based on recall, 
precision, the F1-score, and the Dice coefficient.

Key words: digestive NETs, immunohistochemistry, colour space, nuclei segmen-
tation, enhanced watershed algorithms.

Introduction

Neuroendocrine tumours (NET) are a  heteroge-
neous group of rare malignancies, but their incidence 
is increasing. The tumours can develop in any body 
part and are defined by their secretory properties. 
Neuroendocrine tumours that develop in the digestive 
system are called digestive neuroendocrine tumours. 

They represent 64% of cases. The remaining 28% de-
velop in the bronchopulmonary system and 8% occur 
in other organs. Those malignancies appear commonly 
between the ages of 40 and 60 years [1]. The rarity �
of appearance and heterogeneity of that disease �
explains why the number of randomized studies and �
the level of evidence are low.

DOI: https://doi.org/10.5114/pjp.2022.119841�P ol J Pathol 2022; 73 (2): 134-158



135

A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading  
in immunohistochemical tissue images

Tumour biopsy is the first step in diagnosing a di-
gestive NET. The diagnosis is made after patholo-
gists evaluate the immunohistochemical (IHC) tissue 
image. The histological evaluation ends with tumour 
grading. 

According to the 2017 World Health Organi-
zation (WHO) classification, NETs can take one of �
the following grades: grade G1 NETs, G2 NETs, G3 
NETs, neuroendocrine carcinomas, and mixed neu-
roendocrine non-neuroendocrine neoplasms (Table I). 
Histological grading is based on both the differentia-
tion and the proliferation index [2]. 

The Ki-67 labelling index is measured in 500 cells 
in areas with the highest nuclear labelling rate, i.e. in 

hotspots. Its value is associated with tumour grade and 
patient survival. The higher the proliferation index, 
the higher the grade and the lower the survival rate. 

The commonly used techniques for histological 
grading are eyeballing, eye screening evaluation, or 
manual counting of printed images. Those techniques 
are inefficient, subjective, and time-consuming. They 
are characterized by significant inter-observer vari-
ability and therefore possess poor reliability and re-
producibility. Due to low contrast, the morphology 
of stained cells in images varies. This leads to over- 
or under-detection of cell nuclei. A major problem is 
the overlapping or touching of nuclei, as illustrated 
in Figure 1.

Table I. 2017 World Health Organization classification of digestive neuroendocrine tumours [2]

Grade/classification Ki-67 labelling index (%) Mitotic count

Well-differentiated: neuroendocrine tumour

G1 < 3 < 2

G2 3–20 2–20

G3 > 20 > 20

Poorly differentiated: neuroendocrine carcinoma 

G3 > 20 > 20

Mixed neuroendocrine non neuroendocrine neoplasm 

Fig. 1. Examples of stained digestive neuroendocrine tu-
mour tissue images from Dataset 1 with a different nuclear�
activity using 40× magnification. A) G1, Ki-67~1%. �
B) G2, Ki-67~20%. C) G3, Ki-67~90%

A

C
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Efficient computer-aided diagnosis (CAD) systems 
could remove the limitations mentioned above of tra-
ditional methods for IHC assessment. Pathologists 
have successfully applied those systems in the histo-
logical analysis [3–5]. Most of those CAD systems 
require 3 principal steps to determine the percentage 
of positive cells. The first concerns image quality en-
hancement to reduce the variation in staining infor-
mation. The second step is dedicated to IHC tissue 
image segmentation. The third step is devoted to 
separating overlapping nuclei to avoid the quantifi-
cation error.

 The pre-processing technique is a  preliminary 
task for reaching both high accuracy and relevant im-
age segmentation. Several methods have been pub-
lished to deal with contrast issues or colour inhomo-
geneity in microscopic images. Al-Lahham et al. [3]�
estimated the proliferation index using Ki-67 images 
and an automated system. The original additive co-
lour mixing (R: red, G: green, and B: blue – RGB)�
images were converted to the L * a * b colour space 
by customizing colour modification and colour-space 
transformation. This resulted in excellent decoupling 
of both intensity and colour. In the research work by 
Ghane et al. [6], a novel automatic image segmen-
tation of white blood cells (WBCs) was applied. For 
cell detection, authors performed a  colour adjust-
ment based on a colour conversion from the RGB to �
the CMYK colour representation, in which the con-
trast of the WBCs is better in the Y component. In 
addition, the L * a * b * colour space representation 
was selected for nuclei segmentation. In a  study 
by Rahman et al. [7], the authors proposed a semi-�
automated detection and classification scheme for 
oral squamous cell carcinoma. Due to the non-uni-
form illumination of tissue slides, colour channelling 
was conducted by converting images from the RGB 
into the hyperspectral imaging (HSI) and the CMYK 
colour spaces. The C channel was chosen for fur-
ther processing because it produced the best result. 
A novel segmentation and quantification approach to 
the IHC stained slides was proposed by Roszkowiak 
et al. [4]. It is based on a conversion from the RGB to 
the HSV colour space. That method allows the sepa-
ration of data containing colour information from the 
data containing luminescence intensity information. 
Colour space conversion was also done by qualitative 
assessment [5].

The medical diagnostic process aims to identi-
fy histological structures and explore their different 
morphological appearance in terms of colour inten-
sity, variation form, and density change. To analyse 
those imperfections, microscopic images should be 
segmented after pre-processing. Much effort was 
given to developing an automated algorithm for nu-
clear segmentation. Intensity thresholding is com-
monly used to determine the immune positivity �

of tissue sections in the region of interest. The thresh-
old-based techniques are extensively employed for 
simplicity and their computational complexity [8]. 
The region-based methods have a good noise immu-
nity resistance. Various results were obtained when 
different seeds were chosen. However, that approach 
is time and memory consuming [9, 10]. The contour, 
edge, and region-based segmentation methods were 
constrained by convergence, overlapped structures, 
and contour initialization [11]. 

Some other techniques like graph-cuts [12], 
Markov random fields [13], and geometric models �
[14, 15] were used for identifying stained cells. Fur-
thermore, watershed-based algorithms are widely 
used in the segmentation of histopathological images 
[16]. Despite widespread use, watershed algorithms 
suffer from over-segmentation due to high region-
al minima produced by noise [17]. Many strategies 
have been proposed to overcome that issue including 
marker-controlled watersheds [18, 19], the enhanced 
3D watershed algorithm [20], and the contour esti-
mation base [21, 22]. The capability of the watershed 
algorithm to deal with overlapped nuclei is consid-
ered the basic method for nuclei separation. In [18], 
the authors detected nuclei seed markers using the 
modified super-pixel segmentation approach. Each 
nucleus developed a supersedure to include more in-
formation and enhance segmentation performance. 
In [23], a good algorithm based on concave points 
and ellipse fitting was proposed, where the contour 
is divided into separate segments through concave 
points. The ellipse fitting aims to process the differ-
ent contour segments into separate cells. 

The other techniques comprise deep learning and 
convolutional neural networks [24]. However, those 
approaches require a  large dataset that is computa-
tionally “expensive” to train.

Our work focuses on a novel IHC image pre-pro-
cessing approach for colour space evaluation. Both 
qualitative and quantitative criteria justify the choice 
of the colour component. The modified versions �
of standard algorithms are proposed to reduce the 
complex nature of microscopic images. The adaptive 
local threshold approach based on a modified Lapla-
cian filter was adopted for our study. This was done 
to minimize the implementation complexity, highlight 
the edges of nuclei, and intensify details in tumour 
slides. In addition, we propose an improved watershed 
algorithm to deal with separating the overlapping cell 
nuclei. That algorithm is based on a  concave vertex 
graph that yields good results without losing any geo-
metrical features of cells.

This paper is structured as follows: in section 1, 
we introduce the problem, review the related works, 
and summarize our main contribution. In section 2, 
the proposed scheme for digestive neuroendocrine tu-
mour segmentation is discussed in detail. Section 3 
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is devoted to presenting experimental results and to 
discussing them. Finally, in section 4, conclusions and 
future directions are formulated.

Material and methods

The proposed nuclei segmentation scheme

As illustrated in Figure 2, the overall flowchart 
of the proposed work is carried out according to the 
hierarchical knowledge levels. The image processing 
is conducted at the pixel level, based on converting �
the original image into distinct colour spaces, consid-
ering the experts’ information. In this part, it is worth 
noticing that the choice of the colour space described 
in publications was arbitrary. Most researchers used 
some colour space without presenting arguments 
that would justify their choices. Therefore, we evalu-
ate the contribution of each of those colour represen-
tation spaces. We achieve that goal by computing the 
contrast and the error retention rate (ERR) for each 
colour representation space.

Afterward, we proceed to the primitive visual level, 
at which both detection and segmentation of cancer 
nuclei are effectuated, as shown in Figure 2. This step 
is carried out by detecting the concave points and se-
lecting the optimal path that separates the overlap-
ping nuclei. At the object level, we aim to separate 
the adjacent nuclei and eliminate non-tumour cells. 
Here, morphological information obtained from �
the experts is applied. 

Finally, the scene level is dedicated to the evalua-
tion, interpretation, and comparison of the proposed 
automated segmentation approach with the expert’s 
segmentation ground truth. At that step, we use sever-

al assessment metrics. The main steps of the proposed 
scheme are described in the following subsections. 

Dataset description 

To prove the efficacy of the proposed approach, �
2 datasets were analysed. The first dataset (Dataset 1)�
includes the NET tissues collected from 15 patients 
treated at Salah Azaiez Institute of Oncology, Tuni-
sia, between 2017 and 2019. Those stained biopsies 
images were acquired using an OLYMPUS DP21 
microscope using a  magnifying factor of 10×, 20×, 
and 40× with a resolution of 1600 × 1200 pixels. All 
grades of malignancy were studied. In total, a data-
base of 70 NETs was analysed. An experienced pa-
thologist carefully selected the slides to determine 
the pathologies’ diversity. Immunohistochemical 
tissue images were paraffin-embedded tumour slides 
stained with the biomarker Ki-67, a nuclear prolifer-
ation-related protein. 

Both visual assessment (i.e. eyeballing) and count-
ing was undertaken by 2 experts. The pathologists 
manually analysed the particularities in images in 
which 2 major colours were identified. Our study 
used a  special type of IHC staining to determine 
tumour grading. It was applied to stain tissue for 
clear visualization and differentiation of cell nuclei. �
The positive Ki67 nuclei were stained using diamino-
benzidine (DAB), which appears as a granular brown 
stain with a remarkable intensity variation, whereas 
negative Ki-67 cells appear in blue stained by hae-
matoxylin.

The other benign cells with specific elliptical form 
and small size were identified (i.e. stromal cells and 
lymphocytes). The example of our collected datasets 

Fig. 2. Flowchart of the proposed nuclear segmentation scheme
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consists of distinct colour and brightness variations in 
different high-power fields (Fig. 1).

Our approach was also tested on the online avail-
able Dataset 2 [18], which comprised H-DAB-
stained tissue microarray (TMA) slides stained for 
the biomarker p53. These slides were scanned using 
a Hamamatsu scanner and came from various cancer 
specimens. Samples were randomly captured from 
23 TMA whole scanned slides, using a  magnifica-
tion of 40×. They contained some forms of irregu-
lar staining captured from different cores and a high 
number of overlapping nuclei (Fig. 3). This dataset 
named DataSeg was explored for the nucleus seg-
menting assessment, which comprised 52 images 
with 200 × 200 pixels. The number of the manually 
labelled nuclei in the DataSeg, in which a patholo-
gist confirmed the outlined contour of each nucleus, �
was 1265.

Pre-processing approach

Colour is the main valuable information that an 
IHC image can hold, which can inform us about the 
characteristics of these images. Hence, it is urgent 
to analyse this information and study its variations 
in different conditions. Unfortunately, many issues 
must be faced during the acquisition of the histolog-
ical tissue slide, like the variations in lighting condi-
tions and the staining heterogeneity [25]. The col-
lected slides included various intensities and diverse 
compactness. 

A  pre-processing step was applied to select the 
relevant colour space representation to eliminate �
the staining difference. Moreover, only one colour 
component was chosen instead of 3 to reduce the 
quantity of data to be processed and limit the com-
putational complexity [4]. Thus, conversion to sever-

Fig. 3. Samples of immunohistochemical images from �
Dataset 2 
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al colour models, like RGB, HSI [5], CMYK [7], and 
CIELab [6], [26], was necessary.

The colour above provided coherent characteris-
tics of varied information related to the IHC images. 
The choice of appropriate channel should be based on 
both quantitative and qualitative metrics. This leads 
to optimal results for further processing. As shown in 
Table II, numerous studies relied only on some sub-
jective visual aspects leading to inaccuracy. 

Therefore, such images should be carefully pre-pro-
cessed to evaluate the contribution of each channel 
component. In our study, colour space conversion was 
conducted as the first step, then pertinence evaluation 
of each colour space was applied to select the specified 
channel for further processing. Finally, contrast en-
hancement was proposed before starting higher-level 
processing tasks (compare Fig. 4).

Colour space conversion

In addition to using of the most available colour 
space, several other colour representation spaces, 
such as XYZ, HSI, Lab, Luv, and CMYK, differ in 
their colour data representation. The main purpose 
of this step is to convert the stained IHC images into 
distinct colour spaces to study the variations in terms 
of the appearance of cells across the slide. A detailed 
mathematical transformation from one colour space 
to another is given in Appendix A [32]. Other colour 
space systems (YIQ, I1I2I3, etc.) exist, but we have 
only cited the main spaces used in medical image 
processing.

The diversity between different components �
of each colour space is shown in Figure 5. It should be 
noticed that all representations do not appear in the 
same way regarding the contrast disparity and colour 
non-uniformity. Furthermore, choosing colour space 
can be the essential decision-making element deter-
mining performance. It possesses principal advantag-
es related to its representation. Several colour spaces 
have been designed to treat problems encountered �
in various applications. 

Colour space evaluation and selection
Error retention rate 
After converting the original image to various co-

lour spaces, it is crucial to evaluate its impact. First, 
we assess the qualitative criterion used by the pa-
thologist. This criterion is estimated in 50 patches 

Fig. 4. The proposed pre-processing approach based on colour space evaluation

Table II. Distinct colour space representations are used �
in the publications

References Used colour space

[27] RGB + HSV

[6, 28] CIELab + CMYK

[3, 26] CIELab

[29–31] HSV

HIS

[7] RGB + CMYK + HIS
CIELab – International Commission on Illumination-Lightness-ab chromatic 
axes, HIS – hue-intensity-saturation, HSV – hue-saturation-value,
RGB – red-green-blue, CMYK – cyan-magenta-yellow-key
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Fig. 5. Example of colour space conversion. A) Original image. B) Red – R, Green – G, and Blue – B components respec-
tively. C) X, Y, and Z, respectively. D) L *, u *, and v *, respectively 
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Fig. 5. Cont. E) L *, a *, and b *, respectively. F) Hu – H, Saturation – S, �
and Intensity – I, respectively. G) Cyan – C, Magenta – M, and Yellow – Y, �
Black – K, respectively

E

F

G



142

Hana Rmili, Aymen Mouelhi, Basel Solaiman, et al.

for each colour representation system. The goal is 
to identify the maximum number of stained nuclei 
and compare it with the number labelled by the ex-
pert pathologist. In some channels, the deterioration �
of image details that affects the interpretation phase 
is retained. In the other channels, some details are 
increased due to the conversion process. For that rea-
son, a visual criterion called the “retention rate” (RR) 
is proposed to define the number of objects correct-
ly preserved in the converted image that perfectly�
matches the ground truth. A  pathologist counts �
the latter value.

To further clarify that process, we consider the 
patch example shown in Figure 6. Our expert detect-
ed 11 objects of interest (i.e. positive nuclei marked in 
red). This value varies depending on the colour space. 
For example, channel G of the RGB colour space en-
ables the identification of 15 objects. This number is 
greater than the reference value given by the expert.

In contrast to this finding, channel K in CMYK 
space enables the identification of 4 out of 11 objects 
only. This denotes information loss. It is worth no-
ticing that some colour spaces produce over- or un-
der-detection of nuclei. To quantify that difference, 
we calculated the absolute value of ERR for the ob-
jects of interest from both the RR and the ground 
truth reference value. Table III summarizes our find-
ings.

The reference value of RR found by the pathol-
ogist was equal to 826. Next, we computed the 
number of detected objects RR in several studied co-
lour components. Those values varied substantially. 
Consequently, we observed over-detection in certain 
colour channels (e.g. the components R, L, X) and 
under-detection in the others (e.g. the components C, �
* v, K). Furthermore, we calculated the percentage 
of ERR. That calculation quantifies the difference 
between the reference value mentioned above and �
the number of nuclei detected automatically in each co-
lour space representation (RR). According to Table III,�
the lowest significant error value of the ERR was 
from the HSI colour space including the saturation 
component S.

Contrast computing
The use of the subjective, qualitative evaluation 

of the colour spaces is insufficient. It is necessary 
to move to an objective, quantitative assessment. �
The latter is based on computing the overall contrast 
for each colour system. We calculate the contrast val-
ue using the grey-level co-occurrence matrix (GLCM) 
to guarantee a  satisfactory result in the object’s �
extraction.

The grey-level co-occurrence matrix is a  matrix 
created from a greyscale image. Both intensity dis-
tribution and relative location of pixels in the image 
are used to determine texture features. It was initial-

ly proposed by Haralick et al. [33], who extracted 
14 different texture features from the GLCM matrix. 
Indeed, the grey-level co-occurrence matrix G is an �
L × L matrix, where L indicates the maximum num-
ber of grey levels in the image. The entry G (u, v) rep-
resents the probability that the grey level value “u” 
co-occurs with the value “v” at a distance “d” and the 
predefined angle for a given number of times. This 
study extracted the GLCM contrast at the distance 
d = 1 between neighbouring pixels. In addition, the 
4 angles of 0°, 45°, 90°, and 135° were taken into 
consideration. Finally, the GLCM contrast was com-
puted according to equation 1: 

GLCM Contrast = ∑  ∑ (u – v)2 Puν� (1)
L L

u = 1 ν = 1

The intensity contrast between a  pixel and its 
neighbour is determined over the whole image 
through the contrast computing value and tested on 
distinct colour space representations, as shown in Ta-
ble III. 

Subsequently, the contrast of various colour spaces�
was determined to assess the descriptive texture char-
acteristics within each space. Finally, the contrast val-
ues were normalized for comparison. 

The minimum contrast value was observed in 
the L * u * v colour space. The maximum value was 
found for the HSI colour space (Table III). Further-
more, the selected space (i.e. the HSI) was chosen as 
the most suitable colour space representation for our 
segmentation method, owing to its intense colour re-
gion transitions and the highest normalized contrast 
value. 

Pertinence degree 
To simplify the global evaluation, we propose 

combining the quantitative and the qualitative cri-
teria in only one parameter called the pertinence 
degree (PD). We can easily define the contribution �
of each channel using their PD values. The colour 
space that highlights stained cells and preserves the 
desired tissue objects can thus be selected. The fol-
lowing formula proposes the following linear combi-
nation between those 2 criteria:

PD = a * Contrast + (1– a) × (1 – Error Retention Rate) (2)

The determination of α is performed by studying 
the impact of the variation of its value on PD value 
(this will be shown in the experimental results sec-
tion [section 3.1]). Through this formula, we were 
able to combine the 2 evaluation criteria of contrast 
and ERR into a single criterion which is PD, i.e. for 
each colour space we linearly coupled its contrast val-
ue and its object detection error “ERR” using a lin-
ear coefficient “α”, whose value depends on its PD 
variation. If the α value is higher than 0.5 and tends 
to 1, we prioritize the quantitative criterion of con-



143

A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading  
in immunohistochemical tissue images

Fig. 6. Retention rate of stained nuclei. A) Ground truth. B) Green additive colour mixing. C) Saturation HIS. �
D) K – black colour representation CMYK. E) X – component XYZ. F) Q – component YIQ
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trast compared to the error value. However, if this 
coefficient is less than 0.5 and tends to 0, we priv-
ilege the qualitative criterion of error complement. �
If the α value is equal to 0.5, we give a similar interest �
to these 2 studied criteria. 

According to Table III, the highest value of PD is 
devoted to the “S” colour channel, which is equal to 
0.997 compared to other colour space components. 
Moreover, this value correlates to the highest contrast 
value (C = 1) and the lowest object detection error 
value (ERR = 0.6%). As a conclusion of the pre-pro-
cessing step, the choice of the colour representation 
system is based on the highest value of the PD which 
lies within the range of (0, 1); it tends to be 1 if the 
colour space is relevant and well-adapted in stain 
variability environment.

Contrast enhancement

To increase the contrast of IHC images and to en-
hance the visibility of the morphological cells of mi-
croscopic images, several contrast enhancement tech-
niques have been proposed in the literature [34, 35]. 
In this paper, the colour adjustment method based on 
the colour transform proposed in [36] is applied to 
adjust the image contrast by expanding the dynamic 

range of intensity values it contains. New maximum 
and minimum intensity values are required to exe-
cute the process [37]. The proposed approach is a lin-
ear scaling function applied to the image pixel values 
(i.e. contrast stretching commonly used in much re-
search and defined with this formula [36]):

p (x, y) = 255 × 
q (x, y) – fmin

fmax – fmin
(3)

Where p(x,y) is the new luminance value for pix-
el (x,y), q(x,y) is the luminance level from the pro-
cessed luminance image, fmax is the maximum lumi-
nance level value in the input image, and fmin is the 
minimum luminance level value in the input image. �
The contrast stretching preserves image brightness 
with a minimum loss of image information, as shown 
in Figure 7, which maintains only nuclei by eliminat-
ing the background.

Nuclear segmentation  
of the immunohistochemical tissue images

Adaptive local thresholding and morphological processing

Given the variability in colour and intensity of the 
IHC stained tissue, selecting only one threshold fit-
ting the whole image remains challenging. For this 

Table III. Retention rate, error retention rate, and normalized contrast values for distinct colour spaces assessed �
in 50 patches

Colour space 
and components

RR
(Ref value = 826)

ERR (%) Normalized contrast 
value

PD
(a = 0.5)

RGB

R 1242 50.4

0.35

0.423

G 1112 34.6 0.502

B 936 13.3 0.6085

XYZ

X 1414 71.2

0.22

0.254

Y 1398 69.3 0.2635

Z 679 17.8 0.521

L* u* v

L 1327 60.6

0

0.197

*u 716 13.3 0.4335

*v 303 63.3 0.1835

L* a* b

L 997 20.7

0.007

0.4

*a 781 5.4 0.4765

*b 660 20.1 0.403

HSI

H 1205 45.9

1

0.7705

S 821 0.6 0.997

I 1006 21.8 0.891

CMYK

C 44 94.7

0.174

0.1135

M 1013 22.6 0.474

Y 973 17.8 0.498

K 223 73 0.222
CMYK – cyan-magenta-yellow-key (color spaces see Appendix A), ERR – error retention rate, HSI – hue-saturation-intensity (color spaces see Appendix A),  
PD – pertinence degree, RGB – red-green-blue (color spaces see Appendix A), RR – retention rate



145

A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading  
in immunohistochemical tissue images

reason, there is an urgent need to perform adap-
tive local thresholding due to its capacity to reduce 
the unrepresentative pixel value effects. An adap-
tive threshold is chosen for each pixel depending on �
the intensity distribution in its local neighbour-
hood. This step is achieved by subtracting each pix-
el’s intensity by the neighbourhood’s median value. �
The average area of cell nuclei determines the size of 
the neighbourhood. The latter relies on the magnifi-
cation factors 20× and 40×. Accordingly, the values 
of 22 and 44 are empirically determined for different 
IHC stained images. 

To improve the results of cancer cell segmentation, 
a modified version of the Laplacian filter is used to 
extract the nuclei regions in images with a defined 
threshold, as demonstrated in our previous work 
[38]. The proposed modification aims to obtain uni-
form regions from binary images of the stained IHC 
tissue. In the inherent Laplacian filter, only sensible 
inner contours and intensity variation details of can-
cer cell tissues are obtained. 

This study applies morphological operations to re-
fine the segmentation process by controlling nuclei 
form variability. In this context, the dilatation oper-
ation is first used to cover missing pixels particular-

ly in the borders and to extend the nuclei regions; 
then, closing is employed to improve the smoothness �
of nuclei borders. These 2 morphological operations 
are made using a  flat disk-shaped structuring ele-
ment. Finally, filling holes in the nucleus are applied.

Figure 8 shows an IHC stained tissue example, 
with magnifying factor 40×, which contains several 
significant steps of our proposed segmentation based 
on the previously selected colour space (Fig. 8C). �
The unrepresentative pixel impact is minimized by 
applying the adaptive local thresholding described in 
Figure 8D. Thus, using the modified Laplacian fil-
ter (Fig. 8E), we obtained a binary image of stained 
nuclei, which contains uniform and specific extract-
ed regions. Morphological techniques, i.e. dilatation, 
closing, and hole filling, are applied to the image to 
overcome the irregular nuclear structure issues, as 
shown in Figure 8F.

Separation of the overlapping nuclei

Besides staining inhomogeneity and illumination 
variations, overlapping nuclei in NET tissue slides are 
challenging. To overcome this issue in image analysis, 
several approaches have been proposed. The separation 

Fig. 7. Contrast enhancement of the original image and the saturation component (A, B) and (C, D), respectively
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Fig. 8. Main steps of cell nuclei segmentation. A) Additive colour mixing of original image with magnifying factor 40×. 
B) Contrast enhancement and background subtraction. C) The saturation component. D) Adaptive local thresholding. �
E) Binary image of cell nuclei regions using a modified Laplacian filter. F) Morphological filtering of the detected nuclei re-
gions. G) Morphological processing for non-cancerous nuclei removal. H) Output of the proposed segmentation approach
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method is based on clustering. However, clustering re-
sults in low precision and the appearance of “incorrect” 
areas [39]. The contour estimation approach creates 
contours that do not match the desired cell shape. 

Moreover, watershed-based techniques are used to 
separate touching structures. However, these approach-
es are limited by over-segmentation or under-segmen-
tation. Those effects are caused by the histological 
noise, which generates a high number of regional min-
ima [40, 41]. For those reasons, various enhancements 
have been suggested, such as the marker-controlled 
watershed or the merging region watershed.

To further improve the accuracy of nuclei segmen-
tation, we propose the enhanced watershed method 
[42] based on a concave vertex graph. First, the regions 
with overlapping nuclei are extracted using high con-
cavity points of cell contours for localization of curve 
candidates. Then, the watershed method is applied 
to the hybrid distance transformed image. A concave 
vertex graph is generated using the separating edges 
and concave points. Afterward, the shortest path in 
the graph is computed to identify the ideal separation 
curves. Both the outer boundary of the clustered nuclei 
and the inner edges determine the results of segmen-
tation. Figure 9 illustrates the separation process of 
complex samples of cell nuclei.

Removal of normal-appearing cells

The elimination of lymphocytes and stromal cells 
should be performed to refine the segmentation re-
sults and provide accurate positive nuclei quantifica-
tion. This step was achieved by removing normal-ap-
pearing cells that responded to a  predefined shape 
criterion. The morphological criterion was based on 
the histological analysis. According to the expert in-
terpretation, stromal cells were identified by their el-
liptic form, whereas lymphocytes were recognized by 
their small size compared to the stained cells.

The stromal cell form represented the ratio be-
tween the ellipse’s minor and the major axis. At the 
same time, the size of lymphocytes was quantified by 
the cell area, i.e. the number of pixels in the analysed 
nuclei region. 

According to the pathologist’s prediction, cells 
with a ratio lower than the decision threshold and an 
area lower than the average area of all selected nuclei 
were removed. These decision thresholds, described 
in detail in [37], were empirically determined and 
found to be dependent on the magnifying factors. 
An example of the segmentation improvement due 
to the elimination of nuclei of normal-appearing cells 
is shown in Figure 9 (column 3).

Experimental results and discussion

The fundamental challenges faced in this study 
were variations in colour intensity in histological im-

ages and alterations in the lighting conditions. There-
fore, a  novel pre-processing method is proposed in 
our research. The main contribution of this approach 
is to evaluate colour spaces based on both qualitative 
and quantitative values. 

We demonstrated that the saturation component 
of the HSI colour space yielded the best metrics value 
in terms of the normalized contrast. Moreover, this 
colour channel was characterized by the lowest ERR. 
The pertinence degree reached the value of 0.997. 
Thus, the PD is a  novel criterion that helps select 
the optimal colour space adapted to the various stain 
heterogeneities existing in the databases. 

Immunohistochemical segmentation based on 
the selected colour channel can help pathologists 
during image analysis. To prove the relevance of our 
segmentation approach, we used different sources �
of histological images. Indeed, 2 labelled datasets 
were used to obtain the experimental findings. Data-
set 1 comprised 70 histological images stained with 
Ki-67, which were seen under various magnifications. 
Dataset 2 was composed of 52 H-DAB-stained TMA 
images. Our algorithms were validated on Datasets 
1 and 2, summarized in Figures 10 and 11, respec-
tively.

Parameter configuration

In this section, the influence of the variation of the 
linear coefficient α values on PD is evaluated. Differ-
ent values of α between 0.3 and 0.7 were chosen to 
assess their impact on PD values for each colour space 
(Fig. 12). This experience shows a slight PD variation 
due to the high correlation between the contrast and 
ERR values. As a result, we used an equitable fusion 
of qualitative and quantitative criteria (i.e. based on 
linear coefficient α = 0.5) to select the best-specified 
channel for further processing. However, it is dis-
cernible that the saturation component from the HSI 
colour space has the highest PD value with various 
α coefficients compared with all other colour space 
channels. 

Performance evaluation

To show the effectiveness of the proposed strat-
egy for IHC cancer grading, segmentation results 
were evaluated using both the object- and pixel-wise 
metrics. The quantitative assessment was performed 
by comparing the number of nuclei manually scored 
by the experienced pathologist, using the most com-
mon object-level criteria for object detection. This 
involved recall (sensitivity or true positive rate), pre-
cision (positive predictive value), and F1-score (the 
detection of cell nuclei) (Appendix B). The precision 
and recall values close to 1 indicate a good segmen-
tation performance. Moreover, the F1-score, which 
is the harmonic average of both precision and re-
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A B C

Fig. 9. Segmentation results of some complex cell nuclei configurations (A, B) from Ki-67-stained nuclei (dataset 1), �
(C) from H-DAB-stained TMA image (dataset 2): in all cases, we display the original image, binary image using a modi-
fied Laplacian filter, morphological processing for benign nuclei removing using concave point detection (marked in red), 
and results of our proposed separation scheme, respectively



149

A novel pre-processing approach based on colour space assessment for digestive neuroendocrine tumour grading  
in immunohistochemical tissue images

A

B

C

D

E

Fig. 10. Ki-67 samples of Dataset 1 with different lighting conditions and various grades of digestive neuroendocrine 
tumours. A) Original image. B) Contrast enhancement and background subtraction. C) Binary image using modified La-
placian filter. D) Results of our proposed segmentation scheme with separation of overlapped cell nuclei. E) Morphological 
processing for benign nuclei removing
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A B C

Fig. 11. The output of the proposed segmentation approach was tested on samples of Dataset 2 with different complexity 
levels, for all examples. A) Original image. B) Contrast enhancement. C) Binary image of cell nuclei obtained with modified 
Laplacian filtering
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ED

Fig. 11. Cont. D) Results of our proposed scheme. E) Ground truth constructed manually by pathologists, �
40× H-DAB-stained tissue microarray image
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Table IV. Performance evaluation of computer-assisted Ki-67 compared to the expert’s assessment in overall image database

Parameters Computer assisted Ki-67 evaluation Expert’s assessment

Dataset 1 Dataset 2 Dataset 1 Dataset 2

TP 36321 1258 36367 1265

FP 906 19 0 0

FN 46 7 0 0

Total number of images 70 52 70 52

Recall TPR 0.998 0.994 1 1

Precision PPV 0.976 0.985 1 1

F1-score 0.986 0.989 1 1

Dice’s coefficient 0.979 –

Total processing time [s] 2260.48 95.119 –
FN – false negative, FP – false positive, PPV – positive predictive value, TP – true positive, TPR – true positive rate

call, reached its best value at 1 and worst at 0. The 
performance evaluation of computer-assisted Ki-67 
compared to the expert’s assessment applied to the 
overall database is detailed in Table IV. 

Both the quantitative performance evaluation 
based on counting the positive nuclei and the quali-
tative performance by applying the pixel-wise metrics 
were conducted by comparing segmentation results in 
binary images with the corresponding ground truth 
[41]. The pixel-wise criterion, introduced by Cui et al. 
[43], comprises the missing detection (MD) rate, the 
false detection rate (FDR), the under-segmentation 
rate, and the over-segmentation rate (Appendix B).

In this approach [43], a  false positive result (FP) 
(Appendix B) can be caused by false detection FD. For 
example, lymphocytes are recognized as positive nu-
clei. In addition, an FP can be caused by the over-seg-
mentation (OS), in which one ground-truth nucleus 

is segmented into several nuclei. Furthermore, false 
negative is divided into 2 errors. One of them is the 
MD. This means that nuclei are detected as lympho-
cytes or otherwise. The second error is called the un-
der-segmentation, which comprises several ground 
truth nuclei recognized as a single nucleus. 

Additionally, using these metrics, we can evaluate 
the segmentation quality in terms of correctly detect-
ed nuclei by the proposed segmentation method and 
assess the nuclei splitting process. This qualitative 
performance assessment is summed up in Figure 13. 
The pixel-level criteria are used to assess the segmen-
tation algorithm’s accuracy in predicting the shape 
and size of the identified nuclei. The commonly used 
one is the Dice similarity coefficient (DSC), as shown 
in Table IV (Appendix B).

The DSC lies within the range of (0, 1), with 1 in-
dicating that the segmented image is identical to the 

Fig. 12. The evolution of pertinence degree values according to the variation of α (0.3, 0.4, 0.5, 0.6, and 0.7, respectively) 
for different color spaces: RGB, XYZ, L*u*v, L*a*b, HSI and CMYK respectively (see Appendix A)
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ground truth and tending to 0 when the difference 
between the 2 images is highly significant.

Experimental results and comparative study

The performance evaluation of the proposed segmen-
tation approach was a mandatory step to demonstrate 
the efficiency of our work. Based on the quantitative 
metrics illustrated in Table IV, the high nuclei count-
ing precision of the proposed scheme, compared to the 
ground truth segmentation, can be seen in its reason-
able total processing time. Consequently, we reported 
the F1-score value equal to 0.986 for Dataset 1 and 
0.989 for Dataset 2. It should be noticed that both val-
ues are close to the result obtained by the pathologist. 

The pixel-level metrics reported in Figure 13 con-
firmed the pertinence of segmentation quality owing to 
the high performance of the separation of the overlap-
ping nuclei. According to Figure 13, it is worth noticing 
that our approach achieved a perfect compromise be-
tween the under- and over-segmentation error. Hence, 
the FDR value in Dataset 1 is more significant than 
the one in Dataset 2. This explains the low capacity 
for discriminating between the positive nuclei and the 
other particles. Because these metric values tend to 0, 
the nuclei detection and the separation error decrease. 
The latter effects were negatively correlated with both 
the recall and the precision values. These 4 criteria can 
help pathologists in choosing the appropriate automatic 
segmentation systems designed for a particular purpose.

The efficiency of the proposed approach can be 
shown by comparing its performance with perfor-
mance published elsewhere. It can be seen in Table V�
that our method outperforms 2 methods widely used 
in research. The H-minima technique applied the 
H-minima transform algorithm to the binary im-
age’s distance transform, followed by the watershed 
algorithm. The marker-controlled watershed segmen-
tation is based on the gradient magnitude function. 
Subsequently, it is necessary to use a combination of 
the morphological operations as well as identification 
of the local maxima for computation of the foreground 
markers. Our approach achieved better performance 
in terms of both F1 score and the Dice coefficient. 

Conclusions

Both staining heterogeneity and irregularity of tis-
sue structures cause a deficiency in the IHC images, 

which are characterized by a granular brown stain, 
with intensity variations when the Ki-67 biomarker 
was studied. Furthermore, those image acquisitions 
were affected by the overlapping cell nuclei, which 
contributes to some errors during the quantitative 
measurements. This work required an accurate and 
efficient IHC quantifier for high-throughput deci-
sion-making. The proposed segmentation method 
with a novel pre-processing approach enabled us to 
choose the proper colour space. That space improved 
the segmentation results. Then, the selected colour 
channel was applied to highlight positive cells. Those 
cells could now be easily distinguished from the other 
structures present in the image. Our approach based 
on the component with the highest PD value result-
ed in increased accuracy. The experimental metrics 
also confirmed that finding.

Immunohistochemical image analysis was tested 
on 2 databases that possessed different magnifying 
factors and a  large number of overlapping nuclei. �
The study of digestive NETs acquired satisfactory 
results in both datasets, with an overall DSC value 
of 0.979. This value was more significant than the 
values obtained by the other algorithms used for the 
performance comparison.

The evaluation of the proposed automated segmen-
tation process was conducted to measure the quanti-
tative performance depending on counting the posi-
tive nuclei and the object-level criteria, and to assess �
the segmentation quality using the pixel-wise metrics. 
With the better separation of touching cells, the ex-
traction of the accurate number of positive cancer cell 
nuclei gave promising results. It also enabled a precise 
grading of digestive NETs.

Fig. 13. Pixel-level metrics of segmentation performance 
on 2 datasets
FDR – false detection rate, MDR – missing detection rate, OSR – over-segmentation 
rate, USR – under-segmentation rate
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Table V. Performance of the proposed method in comparison to state-of-the-art algorithms

Methods TPR PPV F1 score Dice coefficient

H-minima 0.885 0.782 0.83 0.71

Marker-controlled watershed 0.85 0.754 0.85 0.665

Proposed method 0.994 0.985 0.989 0.979
PPV – positive predictive value, TPR – true positive rate



154

Hana Rmili, Aymen Mouelhi, Basel Solaiman, et al.

This work can be extended. Other possible im-
provements can be included in future works. For ex-
ample, according to the WHO classification, one can 
determine the Ki-67 proliferation index and use it for 
cancer grading. 

The authors declare no conflict of interest.
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Appendix A. Colour space transformations formulas

Colour space Conversion equations
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Where, X0, Y0, Z0 are 
the components of a white 
reference in XYZ space,

Luv-L – luminance, whereas 
u and v represent chrominance 

components of color images

Where, X (Rmax, 0 , 0), 
Y (0, Gmax, 0), 
Z (0, 0, Bmax)

L* – the luminance 
(black-white opposition) 

[0,100]
a * – the red-green opposition 

[–100,100]
b * – the yellow-blue opposition 

[–100,100]
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Colour space Conversion equations
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Where (HSI – H: hue, 
S: saturation, I: intensity)

 H – (360°– H) 
if (B/I) > (G/I) 

and H is normalized  
by H – H/360°

Where	 C – Cyan
	 M – Magenta
	 Y – Yellow
	 K – Black
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Appendix B. Performance evaluation formulas

Precision =
TP

TP FP+

Recall =
TP

TP FN+

*
F1-Score= 2*

Precision Recall

Precision Recall+

*
F1-Score= 2*

Precision Recall

Precision Recall+

MD
MDR

FN TP
=

+

P = FN + TP – 
MD × OS → �
the number �

of ground truth 
nuclei 

in the TP region)
S = FP + TP + 

FD refers �
to the number �
of segmented 

nuclei in �
the region of TP’s 

corresponding 
ground truth 

nuclei

FD
FDR

TP FP
=

+

US
USR

P
=

OS
OSR

S
=

Exp Exp

Exp Exp

DSC
S S S S

S S S S
= =

+

 



 

FD – false detection, FDR – false detection rate, FN – false negative: the 
number of positive tumour cells that are detected as negative, FP – false positive: 
the number of negative tumour cells that are detected as positive, MD – miss 
detection, MDR – missing detection rate, OS – over-segmentation, OSR – 
over-segmentation rate, S – means the segmented cells acquired from the proposed 
scheme, SExp – indicates the segmented cells obtained from the experts (ground 
truth), TP – true positive is the number of positive tumour cells that are correctly 
segmented, US – under-segmentation, USR – under-segmentation rate


