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Abst rac t
Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world’s 
population. According to current knowledge, psoriasis is a complex disease that involves various genes and envi-
ronmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoria-
sis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells. Despite 
the enormous progress in understanding the mechanisms that cause psoriasis, the target cells and antigens that 
drive pathogenic T cell responses in psoriatic lesions are still unproven and the autoimmune basis of psoriasis still 
remains hypothetical. However, since the identification of the Th17 cell subset, the IL-23/Th17 immune axis has 
been considered a key driver of psoriatic inflammation, which has led to the development of biologic agents that 
target crucial elements of this pathway. Here we present the current understanding of various aspects in psoriasis 
pathogenesis. 
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Introduction

Psoriasis (PsO) is a common, chronic, inflammatory, 
immune-mediated skin disease affecting about 2% of the 
world’s population. It is a lifelong stigmatizing disease 
with both physical and psychological burden that sig-
nificantly reduces the patients’ quality of life. According 
to current knowledge, psoriasis is a complex disease – 
many genes and environmental factors, such as stress, 
injuries, infections and certain medications, may be re-
sponsible for its onset. Among the complex genetic na-
ture of this disease, the most important role is played by 
HLA-Cw*06 allele – the main psoriasis susceptibility gene 
located at the PSORS-1 (Psoriasis Susceptibility) locus, 
which has been attributed up to 50% of the heritability 
of the disease, albeit more than 80 psoriasis susceptibil-
ity loci have been identified up to date. Corresponding 
genes to these loci are implicated in psoriasis immuno-
pathogenesis pathways that involve complex, dysregu-
lated interactions between innate and adaptive immune 
response, resulting in the hallmark of psoriasis – chronic, 
sustained inflammation with uncontrolled keratinocyte 
proliferation and up-normal differentiation.

Chronic inflammation of psoriasis lesions develops 
upon epidermal infiltration, activation, and expansion of 
type 1 and type 17 T cells. Moreover, marked oligoclonal 
expansion of the T-cell populations within the psoriatic 
plaque indicates that psoriatic T-cell activation may be 
driven by locally presented antigens (autoantigens), 
thus, psoriasis pathogenesis is suspected to be both, 
autoimmune and autoinflammatory. Despite enormous 
progress in psoriasis studies the target cells and antigens 
that drive pathogenic CD8+ T cell responses in psoriasis 
lesions are still unproven and the autoimmune basis of 
psoriasis still remains hypothetical.

Understanding the pathogenesis pathways of pso-
riasis through the introduction of new molecular research 
techniques has enabled the introduction of highly targeted 
and effective pathogenesis-based treatment with the po-
tency of complete clearance of skin lesions. These accom-
plishments enable the future achievement of advanced 
goals to individualize treatment best suited for/to each 
patient targeting both psoriasis and associated diseases. 

Epidemiology and clinical manifestation

Psoriasis is a chronic inflammatory, immune-mediat-
ed skin condition affecting more than 125 million indi-
viduals worldwide [1]. Given the high incidence of pso-
riasis and its significant impact on patients’ quality of 
life and socio-economic consequences, the World Health 
Organization has recognized the disease as a global dis-
ease that is a challenge for the healthcare systems [1]. 
Its prevalence depends on ethnicity and the geographic 
region (sun exposure, climate). The worldwide preva-
lence of psoriasis ranges from 0.09% to 11.43% in adult 
population and 0.0–1.3% in children – with the average 

prevalence of 2% [2]. Psoriasis is a common disease 
among Caucasians in Europe and North America with 
the highest prevalence in the Scandinavian population 
[3–5]. The frequency of psoriasis is lower among people 
of Asian and African descent, and very few cases have 
been reported among Native Americans and Aboriginal 
Australians [2]. Analysis of demographic data from the 
Main Statistical Office for Polish provinces estimated the 
prevalence of psoriasis at 2.99% [6]. There is no gender 
predilection of the disease. Psoriasis may start at any 
age but bimodal age of onset is distinctive for this entity. 
Early onset of psoriasis (type I) starts before 40 years of 
age with a peak of onset between 20 and 29 years and 
late onset starts after 40 years of age (type II) with mean 
age of onset being 55–60 years [7].

Psoriasis is a clinically heterogeneous disease, with 
various forms, which are classified according to morphol-
ogy, distribution and anatomical localization. The most 
common type of psoriasis, plaque psoriasis (psoriasis 
vulgaris), is characterized by infiltrated plaques covered 
by silvery scales, which may be either localized or gener-
alized. The most severe form, erythroderma, affects the 
entire body surface and rarely, highly inflammatory forms 
characterized by eruptions of neutrophil-filled pustules. 
Other forms of psoriasis also include: generalized pus-
tular psoriasis (GPP), the more localized palmo-plantar 
pustular psoriasis (PPP), and acrodermatitis continua of 
Hallopeau (ACH). Pustular psoriasis often coexists with 
plaque psoriasis or may start de novo.

Psoriasis is limited not only to the skin, but it is also 
a systemic, inflammatory disease with elevated levels of 
circulating proinflammatory cytokines. Its systemic na-
ture is reflected in coexistence with many other condi-
tions, such as cardiovascular disease, Crohn’s disease, 
depression, metabolic syndrome and its components. 
Up to 30–35% of patients can develop psoriatic arthri-
tis (PsA) which may have serious debilitating effects on 
joints. As a disease with genetic and immunological simi-
larities that overlaps with other autoimmune and auto-
inflammatory diseases, psoriasis serves as a prototype 
disorder for research. 

Functional disturbances of innate lymphoid cells 

Innate lymphoid cells

Innate lymphoid cells (ILCs) are part of the body’s in-
nate immunity. They perform antimicrobial functions, 
are involved in the formation of lymphoid tissue, tissue 
remodeling after damage (trauma), and in hemostasis of 
tissue stromal cells. They are a very diverse group of cells, 
which include natural killer (NK) cells, and ILC1 cells, whose 
main task is antitumor and antiviral protection [8, 9].

ILC3 cells are another subgroup of ILCs that were 
found in large numbers in psoriatic lesions and in the 
serum of patients suffering from psoriasis. They express 
RORgd transcription factor and require the RORgd (RAR-
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related orphan receptor g). These cells produce inter-
leukin (IL)-17 and IL-22 upon stimulation with IL-1b and  
IL-23, which in turn constitute an important element in 
the pathogenesis and development of psoriasis. The de-
velopment and activity of ILC3 depends on IL-7 [8, 10]. 

ILC2 cells are independent of RORgt, while their de-
velopment, similarly to ILC3 cells, is associated with IL-7. 
They take part in the production of IL-13, whose high con-
centration was observed in psoriatic lesions, although its 
role in the pathogenesis of psoriasis is still unclear [9, 11].

Dendritic cells

Dendritic cells (DCs) are diverse in origin and func-
tion. They take part in both the specific and non-specific 
immune responses. They are divided into myeloid (mDCs, 
DC1) and lymphoid (pDCs, DC2, plasmacytoid) cells. 
mDCs are formed in the bone marrow, which they leave 
as immature cells and migrate to various organs. They 
perform various functions depending on their degree of 
maturity:

– immature mDCs induce Th2 cells (type 2 T helper 
cells) and suppressor helper cells that synthesize IL-10 
and transforming growth factor β1 (TGF-b1),

– mature mDCs produce IL-12 and IL-23, stimulating 
Th1 and Th17 lymphocytes.

mDCs mature in different tissues, where they acquire 
the ability to be activated by various factors, e.g. tumor 
necrosis factor α (TNF-α), lipopolysaccharide (LPS), IL-1 
[12]. mDCs include Langerhans cells (LCs, CD1a), dermal 
dendritic cells (DDCs), otherwise known as interstitial DC 
cells (CD 11c), inflammatory DC IDEC (CD 206FcERI) and 
TIP-DC (TNF and-iNOS producing DC) [12, 13].

In psoriasis, IDEC secrete IL-12 and IL-23 and stimu-
late lymphocyte differentiation towards Th1 and type 1 
cytotoxic T cells (Tc1), while TIP-DC cells produce IL-20 
and IL-23, which are responsible for the activation of ke-
ratinocytes and proliferation of Th17 lymphocytes pro-
ducing pro-inflammatory IL-17 [12].

pDCs are a subpopulation of mDCs and lymphatic 
DCs that migrate to the skin only in the presence of 
pathological factors. The main role of DCs is antitumor 
and anti-infective protection, which they accomplish by 
presenting antigens to the cells of the immune system. In 
psoriasis, DCs induce a cascade of pathological reactions 
due to their incorrect activation.

Activation of DCs (in this case pDCs) in patients with 
psoriasis occurs through misdiagnosed (treated as for-
eign) genetic material from own damaged keratinocytes. 
As a result of this reaction, IFN-a (interferon a) is over-
produced, which triggers the immune cascade leading to 
the development of psoriatic skin inflammation. Signifi-
cant participation of DCs in the pathogenesis of psoria-
sis is also manifested by a higher concentration of these 
cells in the skin of the psoriasis sufferers compared to 
healthy individuals [12, 13]. pDCs also play an important 
role in the presentation of viral genetic material, which in 

over 95% stimulates the synthesis of type 1 IFNs (a and b) 
[12, 13]. IFN stimulates IL-2 receptor expression on lym-
phocytes, which activates Th1 and Tc1 lymphocytes.

The function of DCs described above is normal in viral 
infections and explains the exacerbation of the inflam-
matory process in psoriasis patients in the course of such 
infections. In psoriatic lesions, activity of all types of DC 
increases, but mainly IDEC, TIP-DC and pDC.

Mast cells

Mast cells are derived from the bone marrow progeni-
tor cell, from where they migrate to tissues, where, under 
the influence of cytokines, they differentiate and mature. 
Stem cell factor (SCF) and its receptor Kit are involved in 
the differentiation and proliferation of mast cells. After 
SCF binds to the Kit receptor, mast cell proliferation in-
creases [14, 15].

Mast cells located in the skin contain tryptase, chy-
mase, and carboxypeptidase A in their granules and con-
stitute so-called MCTC phenotype of mast cells. We also 
distinguish the MCT and MCC phenotypes that occur in 
mucous membranes and inflammatory infiltrates [14].

Active mast cells with the MCTC phenotype are ob-
served in large numbers in psoriatic lesions. It has also 
been shown that the concentration of SCF is significantly 
increased in the skin of patients suffering from psoriasis 
compared to the skin of healthy individuals [14]. Activa-
tion of mast cells occurs under the influence of bacteria, 
parasites, drugs, food allergens, physical factors such 
as mechanical trauma of the skin, high temperature, 
ultraviolet radiation, and emotional stress. Active mast 
cells release the granule content through degranulation 
and this mechanism is typical for allergic reactions and 
anaphylaxis, however, the release of proinflammatory 
cytokines and other substances is also possible without 
degranulation as it occurs in chronic inflammatory dis-
eases, including psoriasis [16].

In psoriasis, stress is one of the factors responsible 
for mast cell activation, as evidenced by the presence of 
elevated serum corticotropin-releasing hormone (CRH). 
Other substances that are secreted by mast cells include 
IL-1 and interleukins from the IL-1 family, including IL-18, 
IL-33, TNF-a, IFN-g, TGF-b, SCF, granulocyte-macrophage 
colony-stimulating factor (GM-CSF), CCL2, CCL3, CCL4, 
CCL5, and CCL20 [14, 15]. Cutaneous mast cells are lo-
cated in the vicinity of blood vessels and sensory nerve 
endings [14, 15]. It implies the possibility of mast cells’ 
activation by neuropeptides, such as substance P (SP), 
which maintains skin inflammation.

Monocytes and macrophages

Monocytes belong to leukocytes and are immune ef-
fector cells. They come from the bone marrow and circu-
late in the peripheral blood and are present in the spleen. 
They have the ability to migrate from blood to tissues, 
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mainly during inflammation. Then they differentiate into 
inflammatory macrophages and dendritic cells. They 
produce inflammatory cytokines and, by phagocytosis, 
remove residues of other cells and toxic molecules [17].

In psoriasis, keratinocytes are the source of MCP-1/
CCL2 (monocyte chemotactic protein 1). CCL2 is a che-
mokine that increases the migration of monocytes from 
the bloodstream to the skin by chemotaxis. Monocytes 
through CCR2 receptors on their surface bind to CCL2. 
This causes the differentiation of monocytes in the skin 
into macrophages, which behave like antigen present-
ing cells producing TNF-a, which further enhances CCL2 
production. In contrast to neutrophils or T lymphocytes 
located mainly in the epidermis, macrophages are mostly 
located in the dermis [18].

The involvement of macrophages in the pathogenesis 
of psoriasis is not fully understood. Based on available 
data in the literature, it is known that psoriatic lesions 
have an increased number of macrophages compared 
to their number in the healthy skin or in the skin of pa-
tients after successful anti-psoriatic therapy. After their 
activation cutaneous macrophages produce TNF-α and 
vascular endothelial growth factor (VEGF) intensifying 
the process of angiogenesis [19].

Neutrophils

Neutrophils are often the first line of defense in the 
course of acute bacterial infections. They have the ability 
to form neutrophil extracellular traps (NETs) built mainly 
of genetic material from neutrophils, in which they bind 
to antimicrobial peptides (AMPs), protecting the body 
against infection. NETs also play an important role in ini-
tiating autoimmune diseases, a phenomenon which has 
also been observed in the course of psoriasis [15, 19]. In 
psoriasis, neutrophils are mainly seen in the epidermis. 
They intensify proliferation and accelerate keratinocyte 
differentiation and activate T lymphocytes. They also 
produce chemokines such as CXCL1, CXCL2, CXCL8 (IL-8) 
and interleukins (e.g. IL-18) [9, 13]. The described proper-
ties of neutrophils explain the stimulation of their migra-
tion into the sites of bacterial infection in patients with 
psoriasis and the intensification of angiogenesis. Active 
neutrophils produce pro-inflammatory cytokines, includ-
ing IL-17 and proteases. One of them is elastase, which 
is secreted by neutrophils in response to TNF-a and IL-8. 
These phenomena stimulate the proliferation of keratino-
cytes and intensify and maintain skin inflammation [19].

Keratinocytes

Keratinocytes play an important role in initiating the 
development of psoriatic lesions and the chronicity of 
inflammation [19]. These cells perform not only protec-
tive and barrier functions, but they are also involved in 
immunological processes. They protect our body against 
harmful physical, chemical and biological factors in the 

mechanism of both innate and acquired immune re-
sponses.

An important function of the skin (including kera-
tinocytes) is the production of AMPs. These include 
β-defensins (HBDs), psoriasin, dermicin, cathelicidins 
(LL-37), lysozyme, RNase 7, elafins, adrenomedullins, 
and leukocyte protease inhibitors. Secretion of AMPs is 
caused, among others, by trauma and infectious (viral, 
bacterial, fungal, parasitic) agents. Disturbances in the 
production of AMPs affect the pathogenesis of many der-
matoses, including psoriasis, in which an increased ex-
pression of mainly β-defensins, LL-37, RNase 7, psoriasin 
and lysozyme is observed. Increased expression of AMPs 
in the course of psoriasis also results from the increased 
production of proinflammatory cytokines such as TNF-a, 
IL-1, IL-6, IFN-g produced e.g. by NKT (natural killer T-cells) 
or macrophages. The effect of overexpression of AMPs is 
a reduced susceptibility to skin infections (e.g. high con-
centration of LL-37 protects patients suffering from pso-
riasis against staphylococcal infection of the skin) [20].

Damaged keratinocytes produce large amounts of 
AMPs that affect the production of proinflammatory cy-
tokines such as IL-6 and IL-10; chemokines such as IL-8 
(CXCL8), CXCL10, CCL20, which stimulate the migration 
of macrophages, neutrophils, myeloid DCs and Th17 lym-
phocytes into the skin, and IL-1b and IL-18, whose pres-
ence induces the development of inflammation of the 
skin due to injury. IL-1b increases TNF-a production by 
keratinocytes. During an infection, TNF-a and IFN-a are 
synthesized. TNF-a induces the activation of CCL20 che-
mokine and mediates neutrophil recruitment by stimu-
lation of CXCL8 chemokines produced by keratinocytes. 
IFN-a can stimulate the synthesis of CXCL10 and CXCL11 
in keratinocytes leading to the recruitment of Th1 lym-
phocytes.

IL-18 and IL-1b are also responsible for the differentia-
tion of Th1 and Th17 lymphocytes, which in active forms 
secrete IL-22 and IL-17. Both cytokines in turn intensify 
proliferation and activate keratinocytes, thus maintain-
ing chronic inflammation [19, 21]. The literature describes 
the deletion of the LCE3B and LCE3C genes, the lack of 
which impairs the proper functioning of the epidermal 
barrier by changing the composition of proteins building 
the stratum corneum. In this situation, even the slight-
est injury to the epidermis causes the development of 
chronic inflammation and induces the auto-inflammato-
ry mechanisms described above [19].

Natural killer cells and other cells

NK cells are involved in the antiviral and anti-tumor 
response. CD56+, CD16+ NK cells in psoriasis patients are 
responsible for the production of proinflammatory cyto-
kines such as IFN-g, TNF-a, IL-17 and IL-22. They also af-
fect the activity of DCs, macrophages and T lymphocytes 
[10, 22].
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NKT cells are subpopulations of Ta/b lymphocytes 
and express NK cell receptors. They are, therefore, cells 
with common features of both T cells and NK cells. On 
their surface they have a Toll-like receptor (TCR) and sur-
face antigens characteristic of NK cells. In contrast to 
T lymphocytes, which only recognize peptide antigens, 
they are cells that recognize the lipid and glycolipid an-
tigens presented by the CD1d molecule. They have the 
ability to react quickly to the presented antigen and rap-
idly secrete proinflammatory cytokines such as IFN-g,  
IL-2, IL-4, IL-17, IL-22, and TNF-a. They have the ability to 
stimulate other cells of the immune system, such as NK 
cells, T cells, DCs and B cells. NKT cells combine specific 
and non-specific immunity. They play an important role in 
the immune response in the course of infections, cancers 
and psoriasis etc. [10, 23].

The number of both cells described above is higher 
in psoriatic lesions, which undoubtedly indicates their 
effect on the pathogenesis and maintenance of inflam-
mation, although their exact function and pathogenetic 
role in psoriasis has not been fully understood. Moreover, 
NKT cells have receptors such as CXCR3, CCR5 and CCR6, 
which facilitate their migration to psoriatic lesions [10].

Proinflammatory cytokines, such as IL-23, IL-17, and  
Th g/d lymphocytes play an important role in the patho-
genesis of psoriasis. IL-23 is produced by DCs and macro-
phages found in the skin. This cytokine binds to its recep-
tor (IL-23R) located on the cutaneous Th g/d lymphocytes, 
which synthesize significant amounts of IL-17, which is 
next responsible for psoriasis progression [21, 24].

Polarization towards Th1/Th17/Th22 cells

Psoriasis is a Th1-mediated chronic inflammatory skin 
disease. Since the identification of Th17 cell subset, the 
IL-23/Th17 immune axis has been considered a key driver 
of psoriatic inflammation, which has led to the devel-
opment of biologic agents that target crucial elements 
of this pathway [25, 26]. Subsequently, after the role of  
IL-22 has been studied on a mouse model, psoriasis is 
currently regarded as a Th1/Th17/Th22-mediated con-
dition as increased circulating Th1, Th17, and Th22 cell 
levels have been identified [27, 28]. Keratinocytes partici-
pate in innate immune responses by increased synthesis 
of innate effector cells, as well as in adaptive immune 
responses by directing migration of new T cell subsets 
into the skin via cytokine production [29, 30]. 

In the early, initiation phase of psoriasis, DCs are ac-
tivated and start producing inflammatory mediators [30]. 
pDCs express Toll-like receptor (TLR)7 and TLR9 which are 
normally tolerant to self-DNA/RNA as they detect patho-
gen-encoded nucleic acids [31–35]. In the individuals that 
are genetically predisposed, exposure to certain trigger-
ing factors, such as epidermal injury can activate kera-
tinocytes to produce excessive amounts of AMPs, such 
as β-defensins and cathelicidin LL-37 [36, 37]. Stressed 

or dying epidermal cells also release self-nucleic acids, 
self-DNA and self-RNA [38]. LL-37 binds to self-DNA and 
forms condensed complexes protected from degradation 
which are translocated into the endocytic compartments 
of pDCs. LL-37/DNA complexes are able to activate TLR7 
and TLR9, thereby induce IFN-α production by pDCs via 
cytosolic sensors and trigger further activation of pDCs 
and ultimately activate dermal DCs [34, 39–41]. LL-37 is 
an essential molecule in psoriasis pathophysiology as it 
is necessary to break the innate tolerance, it mediates 
recognition of self-DNA and self-RNA by pDCs and acti-
vates them to initiate the disease development [42]. In 
addition, self-RNA/LL-37 complexes stimulate mDCs to 
mature after the production of TNF-α and IL-6 further 
driving T cell activation and cytokine production [36, 38]. 
Extracellular DNA has recently been found in the epi-
dermis in association with NETs further supporting the 
above described model of psoriasis initiation [30]. Acti-
vated DCs are transformed into mature antigen present-
ing cells and are able to produce TNF-α, IL-23 and IL-12 
which interact with naïve T cells. IL-23, in the presence 
of IL-6 and TGF-β, with the additional potentiating ef-
fect of IL-1β and TNF-α, determines the differentiation of 
CD4+ naïve cells into highly pathogenic Th17 cells which 
produce IL-17, IL-22 and TNF-α [43, 44]. IL-23, in associa-
tion with IL-6 and TNF-α, also promotes the production 
of Th22 cells which secrete IL-22 and TNF-α [45]. All these 
mediators further maintain keratinocytes activation 
producing self-antigen LL-37 for psoriatic autoreactive  
T cells, proinflammatory cytokines, such as TNF-α, IL-1β, 
IL-6, chemokines and S100 proteins, propagating the 
chronic inflammation [42, 46, 47]. Taken together, these 
proteins increase keratinocyte proliferation, production 
of AMPs and chemokines which promote angiogenesis 
and neovascularization, neutrophil recruitment, thereby 
sustain skin inflammation [48].

Interleukin 17

The IL-17 cytokine family consists of six isoforms 
named IL-17 A-F. IL-17A and IL-17F are the most closely 
related and share overlapping biological functions [49]. 
These cytokines are involved in the protective immune 
responses (via IL-26) in mucoepithelial infections, par-
ticularly those caused by staphylococci and extracellular 
fungi inducing tissue inflammation [50–52]. High expres-
sion of IL-17A, E, and F is present in psoriatic plaques and 
interleukin 17 receptor A (IL-17RA) is highly expressed 
on the cell surface of keratinocytes and in psoriatic le-
sions [27, 53, 54]. Th17 (CD4+) cells are a major source of  
IL-17A, albeit emerging evidence indicates that it can also 
be produced by CD8+ T cells and γδ T cells [25], NKT cells 
[55, 56], mast cells and neutrophils [57]. IL-17 is a key ef-
fector cytokine downstream of IL-23 that drives psoriatic 
inflammation [58]. The IL-17 receptor is expressed on 
a broad range of cells, including T cells, epithelial cells 
and fibroblasts [59–61]. IL-17 induces IL-17 receptor-de-



Advances in Dermatology and Allergology 2, April / 2020140

D. Samotij, B. Nedoszytko, J. Bartosińska, A. Batycka-Baran, R. Czajkowski, I.T. Dobrucki, L.W. Dobrucki, M. Górecka-Sokołowska,  
A. Janaszak-Jasienicka, D. Krasowska, L. Kalinowski, M. Macieja-Stawczyk, R.J. Nowicki, A. Owczarczyk-Saczonek, A. Płoska, et al.

pendent proliferation of keratinocytes and production of 
proinflammatory cytokines, most importantly IL-1β, IL-6 
and TNF, and antimicrobial peptides, such as β-defensin 
and matrix metalloprotease 9 [62–64].

Interleukin 23

IL-23 was identified in 2000 as a part of the IL-12 fam-
ily, itself a part of the IL-6 superfamily, of heterodimeric 
cytokines and is composed of the IL-12/IL-23 p40 subunit 
and a unique p19 subunit [65]. IL-23 is a key cytokine in-
volved in antibacterial and antifungal immune responses 
and is produced by several cells, predominantly by den-
dritic cells and activated monocytes [66, 67]. Importantly, 
dysregulation of IL-23 production promotes autoinflam-
mation [68]. IL-23 signals through a receptor complex 
composed of the IL-23R subunit and the IL-12Rβ1 subunit, 
common with IL-12 [69, 70]. The IL-23 receptor complex 
is expressed on the surface of lymphoid cells (such as 
αβ and γδ T cells), innate lymphoid cells, and cells of my-
eloid origin, including dendritic cells, macrophages, and 
monocytes [71]. IL-23 binding to its receptor complex pre-
dominantly activates signal transducer and activator of 
transcription 3 (STAT3), which is particularly important in 
psoriasis. This further leads to IL-23-dependent gene ex-
pression [70, 72]. IL-23 is an upstream regulatory cytokine 
that takes action early in the inflammatory cascade in 
psoriasis; it acts on the already committed Th17 popula-
tion to maintain the phenotype and is crucial in the pro-
duction of downstream effector cytokines, such as IL-17A, 
IL-17F, IL-22, IL-21 and TNF-α which eventually contribute 
to the formation of psoriatic plaques [25, 73, 74]. Impor-
tantly, IL-23 is not required for early Th17 cell develop-
ment since the IL-23R is not expressed on naïve T cells. 
The initial differentiation of naïve T cells into Th17 cells 
requires the presence of TGF-β, IL-6, and IL-1β [75–78]. 

The recent advances in the understanding of psoria-
sis pathogenesis have solidified the critical role of IL-23. 
The basic role of IL-23 in the pathogenesis of psoriasis 
has been clarified, and it is closely associated with the 
Th17 lineage.

Tumor necrosis factor α 

TNF-α plays a pivotal role in the pathogenesis of pso-
riasis; it is the first cytokine to be successfully targeted 
by biologic agents [79]. TNF-α production is significantly 
elevated in psoriatic lesional skin as compared to non-
lesional and healthy skin [80, 81]. Numerous studies 
showed that circulating levels of TNF-α are elevated in 
psoriasis patients and correlate with disease severity 
[82–84]. Other than keratinocytes, different cell types, 
such as macrophages/monocytes, mast cells, BDCA-1 
inflammatory DCs, and activated T cells, are sources of 
TNF-α in the stimulated skin [85, 86]. Stimulation with 
TNF-α induces not only immune and inflammatory re-
sponses orchestrated by keratinocytes but also tissue 
remodeling, cell motility, cell cycling, and apoptosis.

TNF-α is a powerful inducer of inflammatory gene 
products in keratinocytes [87]. It shows proinflamma-
tory activity which is potentiated by synergistic interac-
tions with other key cytokines including IL-17, IFN-γ and 
IL-2 [62, 83]. It is considered an upstream mediator in the 
IL-23/IL-17 pathway acting as an inducer of IL-23 synthesis 
by DCs; the clinical improvement seen with TNF-α block-
ade is linked to suppression of the IL-23/Th17 axis [10].

TNF-α activates the nuclear factor kB (NF-κB) signal-
ing pathway, which affects cell survival, proliferation and 
antiapoptotic effects of lymphocytes and keratinocytes 
[88]. In addition, TNF-α stimulates keratinocytes to pro-
duce IL-8, which leads to microabscess formation by en-
hancing neutrophil recruitment in psoriasis [89]. TNF-α 
induces Th17 to produce proinflammatory cytokines 
through the NF-κB pathway in psoriatic lesions, and 
blockade of the NF-κB pathway results in a loss of IL-17A 
production from CD4+ T cells [90].

Interleukin 22

IL-22 is an IL-10 family cytokine which plays an impor-
tant role in the mucosal and barrier organ immunity. Of 
the IL-10-related cytokines, IL-22 is the one that has been 
the most studied in relation to skin inflammation [59, 
91]. IL-22 is produced in combination with IL-17, similarly 
to Th17, ILC3, and mast cells, or exclusively by specific 
CD4+ T and CD8+ T cell subsets, namely Th22 and Tc22 
cells, respectively [92–96]. IL-22 receptor is composed 
of the IL-22R chain and the IL-10R2 chain. The IL-10R2 
chain is expressed broadly, whereas IL-22R is predomi-
nantly expressed on epithelial cells [59, 97]. Binding of 
IL-22 to its receptor complex leads to the activation of 
STAT3 and the ERK1/2 pathway [98–100]. Notably, IL-22 
production is regulated differently than other Th17-as-
sociated cytokines; its expression is less dependent on 
the transcription factor RORγt and more dependent on 
the aryl hydrocarbon receptor (AhR), which is a ligand 
transcription factor in Th17 cells being mandatory for 
the production of IL-22 [101]. Increased expression of  
IL-22 has been detected in both lesional skin and in the 
blood, and IL-22 levels correlate with disease severity 
and significantly decrease during treatment; its effects 
are mostly directed towards regulating keratinocyte func-
tions [28, 102]. Therefore, IL-22 is involved in enhancing 
keratinocyte migration, increasing epidermal thickness, 
inducing chemokine production, AMPs, neutrophil che-
moattractants and production of MMPs [10]. IL-22 has 
a well-documented role in the pathogenesis of psoriasis. 
Even though fenakinumab, IL-22-neutralizing antibody, 
was discontinued, IL-22 is still a potential target for anti-
psoriatic treatments [100, 103] (Table 1). 

Regulatory T cells in psoriasis

Regulatory T (T
Reg

) cells, defined by the expression of 
CD4, CD25 and the transcription factor forkhead box P3 
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Table 1. Cytokines related to the Th1/Th17 axis in psoriasis 

Cytokine Cellular 
source

Receptor Target Immunological effect Role in pathogenesis  
of plaque psoriasis

IFN-γ NK cells 
NKT cells 
Th1 CD4 and 
CD8 cytotoxic 
T lymphocyte 
effector  
T cells

IFNγR mDCs Upregulates the expression of IL-22 receptor 
in keratinocytes
Regulates keratinocyte differentiation

Skin inflammation
Angiogenesis 
Th17 amplification
Keratinocyte hyperproliferation 
and epidermal hyperplasia
DCs maturation
Along with TNF-α, exhibits 
proatherosclerotic properties

IL-23 Macrophages
Tip-DCs
Dermal DCs

IL12Rβ/
IL23R

Th17 Induces dermal gd T cells activation and 
expansion to secrete IL-17, IL-22 and TNF-α
Drives and maintains the differentiation of 
Th17 cells
Stimulates antigen presentation by DCs
Stimulates IFN-γ secretion 

Th17 differentiation 
mDCs activation 
Chronic inflammation

IL-17  
(IL-17A 
and 
IL-17F)

Th17 cells
Tc17 cells 
NK cells
NKT cells
γδ T cells
αβ T cells
ILC3s
Neutrophils
Mast cells

IL17RA/
IL17RC

Keratinocytes
Fibroblasts
Osteoblasts
Endothelial cells

Increases the expression of cathelicidin LL-37
Induces the expression of important 
proinflammatory cytokines, including IL-1β, 
IL-6, GM-CSF, G-CSF and TNF from fibroblasts 
and macrophages
Enhances the expression of chemokines

Inflammation 
Neutrophil recruitment
Angiogenesis
Contributes to development of 
cardiovascular comorbidities

IL-22 Th17 cells
NKT cells
γδ T cells
ILCs
Macrophages
Neutrophils

IL22R1/
IL10Rβ

Keratinocytes
Dermal 
fibroblasts

Induces the expression of proinflammatory 
cytokines (IL-1, IL-6, IL-8, IL-11) 
Promotes the production of neutrophil-
attracting chemokines

Host defense (induces the 
production of antimicrobial 
peptides and chemokines)
Stimulates proliferation of 
keratinocytes and dermal 
fibroblasts 
Inhibits terminal differentiation  
of keratinocytes 
Inflammation 

IL-1b Macrophages 
T cells
Keratinocytes
DCs

ILR1 Keratinocytes
Endothelial cells

Promotes Th17 cells differentiation from naïve 
T cells
Induces dermal γδ T cell proliferation and IL-17 
production
Stimulates keratinocytes to secrete 
chemokines which chemoattract IL-17-capable 
producing T cells

Inflammation
Angiogenesis
Th17 amplification

TNF-α Macrophages
DCs
Keratinocytes
Fibroblasts 
Th17 cells
Adipocytes

TNF-αR1 
(p55)/TNF-
αR2 (p75)

mDCs
Macrophages
Keratinocytes
Adipocytes 

Promotes inflammation through synergism 
with IL-17A and development and maturation 
of mDCs
Facilitates entry of inflammatory cells into 
lesional skin through induction of adhesion 
molecules production
Stimulates keratinocytes to release other 
proinflammatory mediators
Activates dermal macrophages and DCs
Increases production of IL-1, IL-6, IL-8 

Proinflammatory 
DCs activation
Recruitment of immune cells 
Keratinocyte proliferation
Th17 amplification
Metabolic dysregulation

IL-6 Macrophages 
Monocytes
T cells
Th17 cells
Keratinocytes
Fibroblasts 
Endothelial 
cells
DCs 

IL-6R/
gp130

DCs
Macrophages 
T cells

Th17 cells differentiation from naïve CD4+ T cells
Increases Th17/Treg ratio
Iinduces excessive production of VEGF
Promotes differentiation of myeloid progenitors 
to neutrophils
Reinforcement of Th1/Th17 axis
Facilitates IL-22-mediated epidermal hyperplasia
Key mediator of IL-23/Th17-driven cutaneous 
inflammation

Keratinocyte proliferation
Angiogenesis
Treg inhibition
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Cytokine Cellular 
source

Receptor Target Immunological effect Role in pathogenesis  
of plaque psoriasis

IL-12 Monocytes
Macrophages
DCs
B cells
Th1 cells

IL-12Rβ 1/2 
(IL-12R is a 
heterodimer 
composed 
of IL-12Rβ1 
and 
IL-12Rβ2)

Th1 cells
Activates NK 
cells to IFN-γ 
production
Chemotactic 
factor for NK 
cell infiltration

Induction of IFN-γ production from NK cells 
and T cells
Enhancement of NK and T cell cytotoxicity
Differentiation of naïve T cells into Th1 
effectors
Key role in development of cell-mediated 
immunity

Th1 differentiation
Inflammation
NK cells activation

CRP – C-reactive protein, DCs – dendritic cells, IFN-γ – interferon-γ, IL – interleukin, ILCs – innate lymphoid cells, ILC3s – group 3 innate lymphoid cells, mDCs – 
myeloid dendritic cells, NK – natural killer cells, NKT – natural killer T cells, pDCs – plasmacytoid dendritic cells, Th – T helper, Tip-DCs – dendritic cells that release 
tumor necrosis factor and nitric oxide, TNF-α – tumor necrosis factor a, T

reg
 – regulatory T cells, VEGF – vascular endothelial growth factor.

Table 1. Cont.

(FoxP3), represent a distinct lineage of T lymphocytes. 
They have been identified in the human peripheral blood 
and in the human normal skin, where they represent 
about 5–10% of resident T-cells. T

Reg
 cells have a central 

role in the induction and maintenance of immune toler-
ance and protecting an individual from autoimmunity. 
The lack of these cells results in severe autoimmunity. 
They suppress immune response through contact-de-
pendent mechanisms and production of soluble factors, 
including TGF-β, IL-10 and IL-35 [104, 105]. T

Reg
 may exert 

their suppressive functions by a direct cytotoxic effect, 
modulation of dendritic cell functions and metabolic 
disruption [105]. T

Reg
 cells are divided into thymus de-

rived natural T
Reg

 cells and periphery-induced adaptive 
T

Reg
 cells. Some other populations of T cells with regula-

tory and suppressive potential have been identified such 
as IL-10- and TGF-β-producing type 1 regulatory T (T

R
1) 

cells and TGF-β-producing T helper 3 (Th3) cells, however 
these cells do not have unique cell surface markers and 
their precise functions remain to be elucidated [104, 105]. 

There is evidence that supports the involvement of 
impaired T cell regulation in the pathogenesis of pso-
riasis [104, 105]. Several studies showed an increased 
number of T

Reg
 (FoxP3+) cells both in lesional psoriatic 

skin and in peripheral blood of patients with psoriasis 
[106–109]. The increased number of T

Reg
 cells in periph-

eral blood was positively associated with the disease ac-
tivity index [109]. However, some studies provided con-
trary results showing a decreased number of T

Reg
 cells in 

peripheral blood as well as in lesional skin in the acute 
phase of the disease [110–112]. Nevertheless, numerous 
studies demonstrated relative imbalance favoring effec-
tor T cells in psoriasis [104, 108, 113]. T

Reg
 cells, both in 

the peripheral blood and lesional skin of patients with 
psoriasis, have impaired ability to suppress effector 
T cells. Additionally, effector T cells from patients with 
psoriasis have enhanced proliferative capacity [113]. 
Zhang et al. reported that CD4+,CD25+ T

Reg
 cells derived 

from hematopoietic CD34+ cells of patients with psoria-
sis were functionally deficient in vitro to restrain effector  
T cells. Therefore, the authors suggested involvement of 
genetic background in the failure of T cells regulation in 

psoriasis [114]. Impaired suppressive function of T
Reg 

cells 
in psoriasis may result from proinflammatory cytokine 
milieu, especially high levels of IL-6 in psoriatic lesions 
[104, 105, 115, 116]. An increased cell surface expression 
of the IL-6 receptor was found both on T

Reg
 cells and ef-

fector T cells in psoriatic lesions. Goodman et al. showed 
that IL-6 specific antibody can reverse the failure in T

Reg
 

cell-mediated suppression of effector T cells in patients 
with psoriasis [115]. Further, IL-6 enhanced the resistance 
of effector T cells to T

Reg
 cells suppression. Therefore, two 

possible mechanisms of impaired T-cell regulation in pso-
riasis have been proposed: decreased suppressive func-
tion of T

Reg 
cells and resistance of effector T cells to their 

suppression [104, 105, 115]. Bovenschen et al. showed 
that in patients with psoriasis, T

Reg
 cells turn into IL-17 

expressing cells which perpetuate an autoinflammatory 
cascade [116]. They demonstrated the presence of IL-17+, 
Foxp3+, CD4+ cells in psoriatic lesions which potentially 
become Th17 over time. This differentiation was driven 
by psoriatic cytokine milieu. IL-23 has been identified as 
a cytokine primarily responsible for this conversion. Au-
thors identified epigenetic modification, histone/protein 
deacetylation as a key factor underlying T

Reg
 cell plastic-

ity and conversion into potentially pathogenic effector 
T-cells [106, 117]. Recently, it has been demonstrated that 
IL-23 induces generation of CD4+, Foxp3+, RORγt+, IL-17A+ 
cells from T

Reg
 cells in vitro [118].

FOXP3 is the master transcription factor for the de-
velopment and function of T

Reg
 cells. Zhao et al. showed 

that overexpression of microRNA-210 (miR-210) in CD4+ 
T cells from patients with psoriasis inhibited FOXP3 ex-
pression and impaired immunosuppressive functions 
of T

Reg
 cells [119]. In contrast, inhibition of miR-210 in-

creased FOXP3 expression and reversed the immune 
dysfunction of CD4+ T cells. Therefore, authors proposed 
the mechanism of immune dysfunction in psoriasis via 
miR-210 overexpression targeting FOXP3 expression in 
CD4+ T cells [119]. Some authors suggested that single 
nucleotide polymorphism(s) (SNPs) of FOXP3, such as 
intron-1 rs3761548, may be responsible for the defective 
transcription of FOXP3 in psoriasis. Keijsers et al. found 
that the ratio of T

Reg
 (FOXP3+) vs. CD4+ T cells was higher 
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in the distant uninvolved psoriatic skin as compared to 
perilesional and lesional psoriatic skin. They then sug-
gest that impaired T cells regulation as an important trig-
ger for the development of psoriatic skin lesions [120]. 
T

Reg
 cell dysfunction in autoimmune disease may be due 

to inadequate expression of cell surface molecules, in-
volved in the suppressive mechanism, such as cytotoxic 
T lymphocyte antigen 4 (CTLA4), CD95 (FAS) [104]. Kim 
et al. found downregulation of negative immune regula-
tory genes (CTLA4, CD69 and PD-L1) in severe psoriasis 
as compared to mild psoriasis, suggesting immune dys-
regulation as an important factor for disease progression 
[121]. Furthermore, the downregulation of negative im-
mune regulators (FOXP3, CD69, FAS, CTLA4, PD-L1) have 
been identified in (Western) large plaque psoriasis as 
compared to (Asian) small plaque psoriasis, suggesting 
dysregulation of T-cells as a mechanism for expansion of 
psoriatic skin lesions [122]. Vitamin D has been identified 
to be an immunomodulator that primes differentiation 
of naïve T cells into TReg

 cells e.g. via antigen presenta-
tion by tolerogenic dendritic cells and inhibits activity of 
Th1 and Th17 cells [112, 123, 124]. The low serum levels of 
vitamin D in patients with psoriasis was associated with 
a decreased number of circulatory T

Reg
 cells [112]. There-

fore, authors suggested that a low level of vitamin D, 
found in patients with psoriasis, may impair immuno-
logical homeostasis, favoring Th1- and Th17-mediated 
inflammatory process [112, 125].

Photochemotherapy has been shown to increase the 
level of T

Reg
 cells and enhance their suppressive func-

tion in patients with psoriasis [126]. Furthermore, treat-
ment with biologics has been shown to reverse T cells 
dysregulation in psoriasis [127, 128]. Clinical response 
to etanercept may be associated with an upregulation 
of T

Reg
 subsets and reversal of the Th1/Th17 activation 

[127]. Treatment with infliximab has been reported to in-
crease polyclonality of CD4+, CD25+ T

Reg
 cells in patients 

with psoriasis [128]. Recently, it has been shown that 
calcipotriol and betamethasone dipropionate, acting 
synergistically normalize the balance between regulatory 
T cells and proinflammatory CCR6+ γδ Th17 cells, which 
contributes to the successful control of psoriasis in a mu-
rine psoriasis model [129]. Further, anti-IL-17A and anti-
IL-23p19 antibodies have been demonstrated to increase 
the number of T

Reg
 (Foxp3+) cells and IL-10 expression in 

a mouse model of imiquimod-induced psoriasiform der-
matitis [130]. 

Dysregulation of the skin neuroendocrine 
system 

The skin’s capacity to coordinate complex responses 
to environmental stressors [131–134], as well as its ability 
to communicate with the central nervous (CNS), endo-
crine, and immune systems are well recognized [135–139]. 
These properties are facilitated by the local production 

of biogenic amines [140–144], melatonin [145, 146], 
corticotropin-releasing hormone (CRH) and related uro-
cortins [147–150], proopiomelanocortin (POMC)-derived 
peptides such as ACTH, β-endorphin, melanocyte stimu-
lating peptides (MSH-α, β and γ) [151, 152], thyroid stimu-
lating hormone (TSH), thyroid releasing hormone (TRH) 
and thyroid hormones [153, 154], enkephalins [155] and 
other neuropeptides [156–158], as well as cannabinoids 
[159], corticosteroids [160–167], and active forms of vita-
min D [168–172] as examples. Production of these factors 
can be organized in local regulatory axes recapitulating 
hypothalamic-pituitary-adrenal (HPA) axis [173, 174] or 
hypothalamic-pituitary-thyroid axis [153, 154, 175, 176]. 

The dysregulation of the skin neuro-endocrine sys-
tem, specifically of cutaneous HPA axis, can play a role 
in psoriasis, as well as inflammatory or autoimmune dis-
eases [139, 177, 178]. For example, in the upper regula-
tory arm of the HPA, CRH has proinflammatory effects 
when synthesized in the peripheral tissues [179–187]. 
Accordingly, pathogenic roles for CRH, related urocortin, 
and the corresponding CRHR1 receptor in psoriasis were 
also proposed [178, 188–194]. In addition, Vasiadi et al. 
[192] showed an increase in serum CRH levels with a si-
multaneous decrease in CRHR1 gene expression in pso-
riatic skin, while Loite et al. [195] showed an increased 
CRHR1 expression in psoriatic patients, accompanied 
by an increase in the level of POMC and MC2R. Cemil et 
al. [196] showed both an increased expression of CRHR1 
protein with psoriasis and a positive correlation of PASI 
scores with CRHR1 expression. However, there was only 
one report [197] that showed the decreased levels of CRH 
and CRHR1 in chronic psoriasis. We also showed the de-
regulated POMC expression in inflammatory skin disor-
ders, including psoriasis [198]. Thus, there is substantial 
evidence indicating disturbances in different elements 
of the cutaneous HPA axis in psoriasis [reviewed in 139, 
199–201 and see above]. Furthermore, Hannen et al. [202] 
have not only shown that the executive arm of the HPA 
axis (glucocorticoid production and signaling) is defective 
in psoriatic skin, but also that key HPA axis regulators 
(CRH and POMC mRNA, CYP11A1 protein) are elevated in 
glucocorticoid receptor knockout mice compared to con-
trol mice. Although Sarkar et al. [203] provided strong 
evidence for deficient in situ synthesis of glucocorticoids 
(executive arm of the HPA), they contended that the cu-
taneous HPA axis was not defective. Since this was based 
on immunocytochemistry, this study showed an artifi-
cial nuclear immunostaining for “CRH” and its receptor 
“CRHR1” (possibly due to background staining from the 
secondary antibodies), as well as a lack of any other ana-
lytical method to measure proteins/peptide expression, 
such claim has not been found to be proven correct. In 
summary, the above reports demonstrate dysregulation 
of the cutaneous hypothalamic-pituitary arms of the HPA 
in a complex manner that requires further mechanistic 
studies. 
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It is important to revisit here the original concept of the 
cutaneous HPA axis [173] with a brief explanation of its likely 
role in psoriasis (Figure 1). In contrast to the central HPA, 
where all regulatory elements are anatomically separated 
and follow a linear structural hierarchy [204], in the skin all 
these elements are found at the same location, often with-
in the same cells [139, 164, 167]. This may serve to secure 
a more evolutionarily conserved and nonlinear interactions 
within cellular compartments of human skin which are not 
possible in the central HPA axis [133, 167]. Consequently, 
CRH of hypothalamic origin will mainly induce a sequence 
of events which ultimately promotes a state of immunosup-
pression [204, 205], while CRH’s direct action in peripheral 
tissues will primarily be proinflammatory/immunostimu-
latory [179] because of the dissociation from the central 
glucocorticoid signaling. Additionally, the direct activation 
of CRHR2 produces proinflammatory effects in peripheral 
tissues, at least in mice [206]. 

Again it is pertinent to recall some key aspects of this 
often misunderstood concept that cutaneous HPA axis 

controls key elements of human skin biology [139, 174, 
207] and that it contributes to inflammatory skin diseases 
such as psoriasis [178, 202]. In the skin, CRH and urocortin 
predominantly stimulate proinflammatory/immunostimu-
latory responses by either acting directly on normal kera-
tinocytes [185] or through stimulation of cytokine produc-
tion [186], or indirectly via mast cells activation [189, 190, 
208–210]. Vice versa, proinflammatory cytokines are rec-
ognized as potent inducers of CRH, urocortin and POMC 
both at the central and peripheral [139, 151, 211]. This pro-
inflammatory cycle has to be terminated by downstream 
glucocorticoids, and by POMC-derived peptides including 
α-MSH and ACTH to restore local homeostasis [139, 167, 
212]. This termination of CRH/urocortin- or cytokine-
induced proinflammatory activities can be mediated via 
indirect effects involving stimulation of POMC, the pro-
duction and release of corticosteroids [160, 161, 164, 166], 
and POMC-peptides dependent downregulation of NF-κβ 
activities in a context-dependent fashion [187, 213]. ACTH 
and β-endorphin, while predominantly acting as direct 

Figure 1. Modulated expression of the HPA axis elements underlies the development or aggravation of psoriasis. The 
immune-stimulatory activities of the upper arm of the cutaneous HPA axis are expected to be amplified by bidirectional 
communication between CRH/urocortin signaling and locally produced cytokines, unless attenuated by immune-inhibitory 
POMC peptides including ACTH, α-MSH and β-endorphin (whose local production is stimulated by both CRH related 
peptides and/or selected cytokines) and/or terminated by glucocorticoids, which possibly serves as a counter-regulatory 
mechanism to avoid excessive inflammation
CYT – proinflammatory cytokines, CRH – corticotropin-releasing hormone, UCN – urocortins 1-3, CRHR1/CRHR2 – CRH re-
ceptor type 1 and 2, POMC – proopiomelanocortin, β-END – β-endorphin, MSH – melanocyte stimulating hormone, ACTH 
– adrenocorticotropic hormone, CHOL – cholesterol, G-OH – cortisol and corticosterone, G=O – cortisone and 11-dehydro-
corticosterone, GR – glucocorticoid receptor (NR3C1). 
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immunosuppressors [214–216], may have indirect immu-
nostimulatory effects depending on the context [209, 216, 
217], for example, via the activation of mast cells [202, 
209]. For the other elements of the diffuse cutaneous-HPA 
axis which include the activities of CRH-related peptides 
(urocortins 1-3), CRHR2, alternatively spliced CRHR1 and 
CRHR2 isoforms including membrane bound and soluble 
ones, and their coupling to different signal transduction 
systems, their precise roles in psoriasis remain to be es-
tablished [139, 147, 150, 218–221].

In the absence of adequate cutaneous glucocorticoid-
mediated signaling [203, 204], the CRH and urocortin 
systems in psoriatic skin would have direct immunos-
timulatory and/or proinflammatory effects, including 
stimulation of local cytokine production and mast cell 
activation (Figure 1), as a part of a conserved protective 
system that defends the skin against biological, chemical 
and physical insults [139, 167]. Within this cutaneous HPA 
system, immunomodulatory/immunosuppressive effects 
are mainly mediated by α-MSH, ACTH and by glucocorti-
coids, which also act as negative feed-back terminators 
of cytokine, CRH/urocortin and POMC-peptides produc-
tion [139, 167] (Figure 1). Thus, a dysfunctional cutaneous 
HPA in psoriasis includes defects in the executive (CRH-
signaling) and feed-back terminating arms of the HPA, 
POMC peptides and glucocorticoid signaling systems. 

This concept has clinical implications because the de-
velopment of therapeutic strategies that normalize this 
dysregulated neuroendocrine axis in psoriatic skin may 
greatly improve psoriasis management. For example, 
restoring the intracutaneous production of POMC pep-
tides or glucocorticoid production might help to spare 
the patient from anti-inflammatory pharmacotherapy, 
as well as curbing the post-steroid rebound phenomena 
seen in psoriasis. Thus, further investigation into the HPA 
axis activity in the skin of psoriatic patients could yield 
potentially novel treatment for psoriasis as well as other 
autoimmune skin diseases.

Vascular changes, angiogenesis 
and endothelium dysfunction

Psoriasis is also commonly associated with vascular 
modifications within cutaneous microcirculation [222, 
223]. Initial changes are usually limited to the papillary 
dermis and appear long before epidermal hyperplasia can 
be detected. Typical features for psoriatic lesions include 
vascular network expansion and increased blood perfu-
sion occurring together with morphological changes such 
as abnormally dilated, tortuous and elongated capillary 
loops [224]. Contrary to capillaries in healthy skin, they 
exert venous configuration characterized by the multi-
laminated basement membrane and bridge fenestra-
tion of the endothelial tube. This phenotype results in 
increased permeability facilitating the migration of se-
rum proteins and inflammatory cells, which contributes 

significantly to the development of psoriatic plaques 
[225–230]. Vascular net expansion is a result of intense 
angiogenesis, where endothelial cells (ECs) sprout from 
existing blood vessels, migrate and proliferate to form 
new vessels. This process is strictly regulated by both 
pro- and antiangiogenic factors. Disturbed balance be-
tween those opposite groups of active molecules is a key 
element of increased pathological angiogenesis and de-
velopment of psoriatic plaques [231–235].

Indeed, a significant number of studies revealed an 
increased level of proangiogenic compounds within pso-
riatic skin including hypoxia-inducible factor 1 (HIF-1), 
TNF-α, TGF, endothelial cell stimulating angiogenesis fac-
tor (ESAF), platelet-derived growth factor (PDGF), IL-8,  
IL-17, angiopoietins and VEGF released mainly by activated 
basal keratinocytes [223, 231, 235–237]. These findings re-
vealed a crucial role of interaction between keratinocytes 
and microvasculature within the skin in development of 
psoriasis. Another mechanism that plays an important 
role in angiogenesis is interaction of ECs with extracel-
lular matrix. Increased expression of αvβ3 integrin and 
adhesion molecules like E-selectin, vascular cell adhe-
sion molecule-1 (VCAM-1) and intercellular adhesion mol-
ecule-1 (ICAM-1) was found within psoriatic skin lesions 
[226, 238].

One of the key growth factors regulating angiogen-
esis is VEGF [239, 240], which is produced by many cells 
including T lymphocytes, monocytes, macrophages, 
fibroblasts, platelets, keratinocytes, smooth muscle 
cells, ECs, and tumor cells. VEGF participates in all 
stages of angiogenesis, under both physiological and 
pathological conditions; it stimulates proliferation and 
migration of ECs and formation of new vessels [241]. 
Increased levels of VEGF mRNA in keratinocytes isolated 
from skin of patients with psoriasis and an increased 
expression of its receptors, VEGFR-1 and VEGFR-2, in the 
endothelium of capillaries within the skin papillae from 
patients suffering from psoriasis were observed for the 
first time in 1994 [242]. VEGF expression is increased 
both in active psoriatic lesions and in unchanged skin 
of patients with psoriasis [241]. An increased amount 
of VEGF in psoriatic epidermal cells positively corre-
lates with the severity of the disease. The important 
role of VEGF in development of psoriatic plaques was 
also confirmed with remission of psoriasis lesions dur-
ing therapy with bevacizumab, a monoclonal antibody 
against VEGF [243, 244].

Neovascularization may also occur in a process termed 
postnatal vasculogenesis which contributes to circulating 
endothelial progenitor cells (CEPCs). CEPCs are a popula-
tion of bone marrow-derived cells circulating in peripheral 
blood that have the ability to migrate, proliferate and dif-
ferentiate into mature ECs. However, this particular mech-
anism of new blood vessel formation is unlikely to occur 
in psoriasis because the number of CEPCs in a serum of 
psoriatic patients is significantly declined [245]. 
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In recent years a growing number of studies have 
revealed the association of psoriasis with other comor-
bidities, especially with cardiovascular diseases [231, 232, 
234–246]. The risk of myocardial infarction and cerebro-
vascular disease is increased in psoriasis and correlates 
with disease severity. There is also an increased risk of 
coronary heart disease and atherosclerosis. Patients with 
psoriasis have increased carotid intima-media thickness, 
prevalence and severity of coronary artery calcification 
and atherosclerosis, and aortic vascular inflammation, all 
of which correlates positively with psoriasis severity [247–
251]. Most of the cardiovascular risk factors including hy-
pertension, dyslipidemia, obesity, diabetes mellitus, and 
other metabolic pathologies are more prevalent in pso-
riasis [246, 251–253]. This association may be explained 
based on common pathogenic factors including inflam-
mation and oxidative stress. The cytokine profile of psori-
atic skin lesions and atherosclerotic vascular lesions show 
many similarities such as an increased number of Th1 and 
Th17 lymphocytes and Th17-related cytokines (IL-6, IL-8, 
IL-17). The systemic inflammation leads to adipose tissue 
inflammation and an increased release of proinflammato-
ry adipokines such as leptin and resistin and a decreased 
level of anti-inflammatory adipokines that also protects 
against insulin resistance and atherogenesis. Psoriasis 
and atherosclerosis are also associated with similar reac-
tive oxygen species signaling cascades including activa-
tion of the JAK-STAT, NF-κB and MAPK cascades [240, 248].

The combination of inflammation, oxidative stress 
and dyslipidemia leads to endothelial dysfunction. Pa-
tients with psoriasis present increased intima-media 
thickness (IMT) and stiffness of arteries combined with 
deteriorated vasodilation and decreased elasticity of 
vessels [254–257]. Patients with psoriasis revealed sig-
nificantly increased carotid IMT, impaired endothelial 
function, and similar arterial stiffness compared to the 
control group [258]. In some studies flow mediated di-
lation (FMD) of the brachial artery was measured with 
ultrasound. FMD was significantly decreased comparing 
to the controls, which directly indicates dysfunction of 
endothelium [258, 259].

These findings are in agreement with studies reveal-
ing an increased number of circulating endothelial cells 
(CEC) and a decreased number of CEPCs in psoriatic pa-
tients [245, 260]. The elevated number of CEC in psoriasis 
may be a result of both endothelium impairment and in-
creased angiogenesis. CEPCs play a crucial role in mainte-
nance of vascular homeostasis and regeneration of endo-
thelium. As mentioned above, an impaired number and 
function of CEPCs have been found in patients with pso-
riasis. Both an increased number of CEC and a decreased 
number of CEPCs are considered as a marker of CVD risk.

Recently, a new approach linking psoriasis with AGE/
RAGE axis has emerged. AGEs are advanced glycation 
end products of non-enzymatic glycation between reduc-
ing sugars and free amino groups of proteins, lipids and 

nucleic acids. The most common modified residues are 
CML (N-carboxylmethyllysine), CEL (N-carboxylmethylly-
sine), pyrraline, pentosidine, N-lactatolysine and imidaz-
oles. AGEs are formed physiologically during aging but 
also accelerated levels of AGEs and RAGE (receptor for 
advanced glycation end products) are observed in many 
inflammatory and metabolic diseases like diabetes, ath-
erosclerosis and also psoriasis. AGE accumulation in the 
skin leads to increased production of free radicals result-
ing in increased production of oxidized LDL and peroxi-
dation products in the skin [261–263]. RAGE is a member 
of the superfamily of the immunoglobulins, multi-ligand 
signaling receptors. Beyond the AGEs, RAGE binds certain 
members of the high mobility group box 1 (HMGB1) fam-
ily, S100/calgranulin family, amyloid-β peptide, β-sheet 
fibrils, lysophosphatidic acid, degraded extracellular 
matrix fragments and others. RAGE is also a transmem-
brane receptor expressed on the surface of many cells 
like ECs, monocytes, macrophages, smooth muscle cells, 
podocytes, astrocytes, DCs and epithelial cells like kerati-
nocytes. Interaction between RAGE and its ligands leads 
to the activation of the transcription factor NF-κB that 
modulates transcription of inflammatory genes. RAGE-
mediated signaling triggers expression of adhesion mol-
ecules, proinflammatory cytokines and recruitment of 
inflammatory cells to the site of inflammation [263–265].

Within the inflamed psoriatic skin pronounced 
production of RAGE ligands – S100 proteins was also 
revealed, including psoriasin (S100A7) and koebneri-
sin (S100A15). Increased serum levels of Calgranulin A 
(S100A8), Calgranulin B (S100A9) and Calgranulin C 
(S100A12) were also observed in patients with psoriasis 
and correlated with the severity of skin involvement [261, 
266]. HMGB1 level was increased in the serum of psori-
atic patients. HMGB1 may favor the shift of T regulatory 
cells into Th17 cells playing a crucial role in psoriasis in-
duction [267].

The elevated AGE level results in increased skin auto-
fluorescence. Indeed, the level of skin autofluorescence 
was elevated in patients with severe psoriasis and cor-
relates positively with the serum total AGE level and se-
verity of disease [267]. Also, other studies implementing 
different techniques for AGEs concentration determina-
tion revealed an increased level of total AGEs, individual 
members of the AGE family, e.g. pentosidine, or even 
methylglyoxal – precursor of AGEs, in serum and skin of 
patients with psoriasis [256, 258, 267–269].

One of the RAGE isoforms is soluble RAGE (sRAGE) 
that is lacking a cytoplasmic tail and a domain crucial 
for signal transduction. sRAGE acts as a decoy receptor, 
binding RAGE ligands without mediation of any cellular 
activity [270]. However, in patients with psoriasis, serum 
levels of sRAGE are significantly lower comparing with 
controls and correlate inversely with disease severity. 
Decreased levels of sRAGE may contribute to the chronic 
inflammatory process and atherosclerosis. The sRAGE 
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level may also be considered as a biomarker for disease 
severity and chronic inflammatory state in patients with 
psoriasis [261].

Interaction of RAGE with its ligands stabilizes the 
receptor in the active state amplifying inflammation by 
releasing of cytokines and chemokines, production of re-
active oxygen species and the activation of metalloprote-
ases. Inflammation is in turn associated with induction of 
more AGEs, enhancing the inflammatory response [262].
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