eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank

1/2014
vol. 6
 
Share:
Share:
abstract:

Original paper
Optimal single 3T MR imaging sequence for HDR brachytherapy of cervical cancer

Claire Dempsey
,
Jameen Arm
,
Leah Best
,
Geetha Govindarajulu
,
Anne Capp
,
Peter O’Brien

J Contemp Brachytherapy 2014; 6, 1: 3–9
Online publish date: 2014/03/17
View full text Get citation
 
Purpose: The superior image quality of 3 tesla (3T) magnetic resonance (MR) imaging in cervical cancer offers the potential to use a single image set for brachytherapy. This study aimed to determine a suitable single sequence for contouring tumour and organs at risk, applicator reconstruction, and treatment planning.

Material and methods: A 3T (Skyra, Siemens Healthcare AG, Germany) MR imaging system with an 18 channel body matrix coil generated HDR cervical cancer brachytherapy planning images on 20 cases using plastic-based treatment applicators. Seven different T2-weighted Turbo Spin Echo (TSE) sequences including both 3D and contiguous 2D scans based on sagittal, axial (transverse), and oblique planes were analysed. Each image set was assessed for total scanning time and usefulness in tumour localization via inter- and intra-observer analysis of high-risk clinical target volume (HR CTV) contouring. Applicator reconstruction in the treatment planning system was also considered.

Results: The intra-observer difference in HR CTV volumes between 2D and 3D axial-based image sets was low with an average difference of 3.1% for each observer. 2D and 3D sagittal image sets had the highest intra- and inter observer differences (over 15%). A 2D axial ‘double oblique’ sequence was found to produce the best intra- (average difference of 0.6%) and inter-observer (mean SD of 9.2%) consistency and greatest conformity (average 0.80).

Conclusions: There was little difference between 2D and 3D-based scanning sequences; however the increased scanning time of 3D sequences have potential to introduce greater patient motion artifacts. A contiguous 2D sequence based on an axial T2-weighted turbo-spin-echo (TSE) sequence orientated in all planes of the treatment applicator provided consistent tumour delineation whilst allowing applicator reconstruction and treatment planning.
keywords:

cervix cancer, cervical cancer, magnetic resonance imaging, treatment planning, 3 Tesla

 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.