eISSN: 2081-2841
ISSN: 1689-832X
Journal of Contemporary Brachytherapy
Current Issue Archive Supplements Articles in Press Journal Information Aims and Scope Editorial Office Editorial Board Register as Author Register as Reviewer Instructions for Authors Abstracting and indexing Subscription Advertising Information Links
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank

4/2013
vol. 5
 
Share:
Share:
abstract:

Original paper
Dosimetric impacts of applicator displacements and applicator reconstruction-uncertainties on 3D image-guided brachytherapy for cervical cancer

Joshua Schindel
,
Winson Zhang
,
Sudershan K. Bhatia
,
Wenqing Sun
,
Yusung Kim

J Contemp Brachytherapy 2013; 5, 4: 250-257
Online publish date: 2013/12/18
View full text Get citation
 
Purpose: To quantify the dosimetric impact of applicator displacements and applicator reconstruction-uncertainties through simulated planning studies of virtual applicator shifts.

Material and methods: Twenty randomly selected high-dose-rate (HDR) titanium tandem-and-ovoid (T&O) plans were retrospectively studied. MRI-guided, conformal brachytherapy (MRIG-CBT) plans were retrospectively generated. To simulate T&O displacement, the whole T&O set was virtually shifted on treatment planning system in the cranial (+) and the caudal (–) direction after each dose calculation. Each shifted plan was compared to an unshifted plan. To simulate T&O reconstruction-uncertainties, each tandem and ovoid was separately shifted along its axis before performing the dose calculation. After the dose calculation, the calculated isodose lines and T&O were moved back to unshifted T&O position. Shifted and shifted-back plan were compared.

Results: Regarding the dosimetric impact of the simulated T&O displacements, rectal D2cc values were observed as being the most sensitive to change due to T&O displacement among all dosimetric metrics regardless of point A (p < 0.013) or MRIG-CBT plans (p < 0.0277). To avoid more than 10% change, ± 1.5 mm T&O displacements were accommodated for both point A and MRIG-CBT plans. The dosimetric impact of T&O displacements on sigmoid (p < 0.0005), bladder (p < 0.0001), HR-CTV (p < 0.0036), and point A (p < 0.0015) were significantly larger in the MRIG-CBT plans than point A plans. Regarding the dosimetric impact of T&O reconstruction-uncertainties, less than ± 3.0 mm reconstruction-uncertainties were also required in order to avoid more than 10% dosimetric change in either the point A or MRIG-CBT plans.

Conclusions: The dosimetric impact of simulated T&O displacements was significantly larger in the MRIG-CBT plans than in the point A plans. Either ± 3 mm T&O displacement or a ± 4.5 mm T&O reconstruction-uncertainty could cause greater than 10% dosimetric change for both point A plans and MRIG-CBT plans.
keywords:

3D image, applicator shifts, brachytherapy, cervical cancer, dosimetry, high-dose-rate

 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.